1.7 problem 7

1.7.1 Maple step by step solution

Internal problem ID [6773]
Internal file name [OUTPUT/6020_Monday_July_25_2022_01_59_43_AM_41766277/index.tex]

Book: Elementary differential equations. By Earl D. Rainville, Phillip E. Bedient. Macmilliam Publishing Co. NY. 6th edition. 1981.
Section: CHAPTER 16. Nonlinear equations. Section 94. Factoring the left member. EXERCISES Page 309
Problem number: 7.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {x {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+y=0} \] The ode \begin {align*} x {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+y = 0 \end {align*}

is factored to \begin {align*} \left (y^{\prime } x -1\right ) \left (-y^{\prime }+y\right ) = 0 \end {align*}

Which gives the following equations \begin {align*} y^{\prime } x -1 = 0\tag {1} \\ -y^{\prime }+y = 0\tag {2} \\ \end {align*}

Each of the above equations is now solved.

Solving ODE (1) Integrating both sides gives \begin {align*} y &= \int { \frac {1}{x}\,\mathop {\mathrm {d}x}}\\ &= \ln \left (x \right )+c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \ln \left (x \right )+c_{1} \\ \end{align*}

Verification of solutions

\[ y = \ln \left (x \right )+c_{1} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \ln \left (x \right )+c_{1} \\ \end{align*}

Verification of solutions

\[ y = \ln \left (x \right )+c_{1} \] Verified OK.

Solving ODE (2) Integrating both sides gives \begin {align*} \int \frac {1}{y}d y &= x +c_{2}\\ \ln \left (y \right )&=x +c_{2}\\ y&={\mathrm e}^{x +c_{2}}\\ y&=c_{2} {\mathrm e}^{x} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{2} {\mathrm e}^{x} \\ \end{align*}

Verification of solutions

\[ y = c_{2} {\mathrm e}^{x} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{2} {\mathrm e}^{x} \\ \end{align*}

Verification of solutions

\[ y = c_{2} {\mathrm e}^{x} \] Verified OK.

1.7.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x {y^{\prime }}^{2}-\left (1+y x \right ) y^{\prime }+y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {1}{x}, y^{\prime }=y\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {1}{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int \frac {1}{x}d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\ln \left (x \right )+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\ln \left (x \right )+c_{1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=y \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y}d x =\int 1d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=x +c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{x +c_{1}} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y=\ln \left (x \right )+c_{1} , y={\mathrm e}^{x +c_{1}}\right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful 
Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(x*diff(y(x),x)^2-(1+x*y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= \ln \left (x \right )+c_{1} \\ y \left (x \right ) &= {\mathrm e}^{x} c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.01 (sec). Leaf size: 20

DSolve[x*(y'[x])^2-(1+x*y[x])*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to c_1 e^x \\ y(x)\to \log (x)+c_1 \\ \end{align*}