4.8 problem 8

4.8.1 Maple step by step solution

Internal problem ID [6924]
Internal file name [OUTPUT/6167_Tuesday_August_09_2022_05_23_59_AM_67397934/index.tex]

Book: Elementary differential equations. Rainville, Bedient, Bedient. Prentice Hall. NJ. 8th edition. 1997.
Section: CHAPTER 18. Power series solutions. 18.4 Indicial Equation with Difference of Roots Nonintegral. Exercises page 365
Problem number: 8.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ 2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= -\frac {x -2}{2 x}\\ q(x) &= -\frac {1}{x}\\ \end {align*}

Table 12: Table \(p(x),q(x)\) singularites.
\(p(x)=-\frac {x -2}{2 x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=-\frac {1}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 2 x y^{\prime \prime }+\left (2-x \right ) y^{\prime }-2 y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 2 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (2-x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )-2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 \left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r -1}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r} a_{n} \left (n +r \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 a_{n} x^{n +r}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} x^{n +r -1}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r -1\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 \left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} x^{n +r -1}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )+2 \left (n +r \right ) a_{n} x^{n +r -1} = 0 \] When \(n = 0\) the above becomes \[ 2 x^{-1+r} a_{0} r \left (-1+r \right )+2 r a_{0} x^{-1+r} = 0 \] Or \[ \left (2 x^{-1+r} r \left (-1+r \right )+2 r \,x^{-1+r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ 2 x^{-1+r} r^{2} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 2 r^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= 0\\ r_2 &= 0 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ 2 x^{-1+r} r^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \([0, 0]\).

Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\tag {1A} \end {align*}

Now the second solution \(y_{2}\) is found using \begin {align*} y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right )\tag {1B} \end {align*}

Then the general solution will be \[ y = c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \] In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), \(a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0} = 1\), and \(\{c_{1}, c_{2}\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 2 a_{n} \left (n +r \right ) \left (n +r -1\right )-a_{n -1} \left (n +r -1\right )+2 a_{n} \left (n +r \right )-2 a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = \frac {a_{n -1} \left (n +r +1\right )}{2 n^{2}+4 n r +2 r^{2}}\tag {4} \] Which for the root \(r = 0\) becomes \[ a_{n} = \frac {a_{n -1} \left (n +1\right )}{2 n^{2}}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {2+r}{2 \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{1}=1 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{2}={\frac {3}{8}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{3}={\frac {1}{12}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)
\(a_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{4}={\frac {5}{384}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)
\(a_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\)
\(a_{4}\) \(\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{384}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=\frac {6+r}{32 \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{5}={\frac {1}{640}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)
\(a_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\)
\(a_{4}\) \(\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{384}\)
\(a_{5}\) \(\frac {6+r}{32 \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{640}\)

For \(n = 6\), using the above recursive equation gives \[ a_{6}=\frac {7+r}{64 \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{6}={\frac {7}{46080}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)
\(a_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\)
\(a_{4}\) \(\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{384}\)
\(a_{5}\) \(\frac {6+r}{32 \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{640}\)
\(a_{6}\) \(\frac {7+r}{64 \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {7}{46080}\)

For \(n = 7\), using the above recursive equation gives \[ a_{7}=\frac {8+r}{128 \left (7+r \right ) \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}} \] Which for the root \(r = 0\) becomes \[ a_{7}={\frac {1}{80640}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\)
\(a_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\)
\(a_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\)
\(a_{4}\) \(\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{384}\)
\(a_{5}\) \(\frac {6+r}{32 \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{640}\)
\(a_{6}\) \(\frac {7+r}{64 \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {7}{46080}\)
\(a_{7}\) \(\frac {8+r}{128 \left (7+r \right ) \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{80640}\)

Using the above table, then the first solution \(y_{1}\left (x \right )\) becomes \begin{align*} y_{1}\left (x \right )&= a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8}\dots \\ &= 1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right ) \\ \end{align*} Now the second solution is found. The second solution is given by \[ y_{2}\left (x \right ) = y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right ) \] Where \(b_{n}\) is found using \[ b_{n} = \frac {d}{d r}a_{n ,r} \] And the above is then evaluated at \(r = 0\). The above table for \(a_{n ,r}\) is used for this purpose. Computing the derivatives gives the following table

\(n\) \(b_{n ,r}\) \(a_{n}\) \(b_{n ,r} = \frac {d}{d r}a_{n ,r}\) \(b_{n}\left (r =0\right )\)
\(b_{0}\) \(1\) \(1\) N/A since \(b_{n}\) starts from 1 N/A
\(b_{1}\) \(\frac {2+r}{2 \left (r +1\right )^{2}}\) \(1\) \(\frac {-3-r}{2 \left (r +1\right )^{3}}\) \(-{\frac {3}{2}}\)
\(b_{2}\) \(\frac {3+r}{4 \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {3}{8}\) \(\frac {-2 r^{2}-11 r -13}{4 \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {13}{16}}\)
\(b_{3}\) \(\frac {4+r}{8 \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{12}\) \(\frac {-3 r^{3}-27 r^{2}-74 r -62}{8 \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {31}{144}}\)
\(b_{4}\) \(\frac {5+r}{16 \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {5}{384}\) \(\frac {-2 r^{4}-27 r^{3}-128 r^{2}-252 r -173}{8 \left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {173}{4608}}\)
\(b_{5}\) \(\frac {6+r}{32 \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{640}\) \(\frac {-5 r^{5}-95 r^{4}-685 r^{3}-2335 r^{2}-3744 r -2244}{32 \left (5+r \right )^{2} \left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {187}{38400}}\)
\(b_{6}\) \(\frac {7+r}{64 \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {7}{46080}\) \(\frac {-6 r^{6}-153 r^{5}-1555 r^{4}-8035 r^{3}-22163 r^{2}-30764 r -16668}{64 \left (6+r \right )^{2} \left (5+r \right )^{2} \left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {463}{921600}}\)
\(b_{7}\) \(\frac {8+r}{128 \left (7+r \right ) \left (6+r \right ) \left (5+r \right ) \left (4+r \right ) \left (3+r \right ) \left (2+r \right ) \left (r +1\right )^{2}}\) \(\frac {1}{80640}\) \(\frac {-7 r^{7}-231 r^{6}-3143 r^{5}-22785 r^{4}-94682 r^{3}-224448 r^{2}-279376 r -139824}{128 \left (7+r \right )^{2} \left (6+r \right )^{2} \left (5+r \right )^{2} \left (4+r \right )^{2} \left (3+r \right )^{2} \left (2+r \right )^{2} \left (r +1\right )^{3}}\) \(-{\frac {971}{22579200}}\)

The above table gives all values of \(b_{n}\) needed. Hence the second solution is \begin{align*} y_{2}\left (x \right )&=y_{1}\left (x \right ) \ln \left (x \right )+b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8}\dots \\ &= \left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) \ln \left (x \right )-\frac {3 x}{2}-\frac {13 x^{2}}{16}-\frac {31 x^{3}}{144}-\frac {173 x^{4}}{4608}-\frac {187 x^{5}}{38400}-\frac {463 x^{6}}{921600}-\frac {971 x^{7}}{22579200}+O\left (x^{8}\right ) \\ \end{align*} Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} \left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) + c_{2} \left (\left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) \ln \left (x \right )-\frac {3 x}{2}-\frac {13 x^{2}}{16}-\frac {31 x^{3}}{144}-\frac {173 x^{4}}{4608}-\frac {187 x^{5}}{38400}-\frac {463 x^{6}}{921600}-\frac {971 x^{7}}{22579200}+O\left (x^{8}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} \left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right )+c_{2} \left (\left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) \ln \left (x \right )-\frac {3 x}{2}-\frac {13 x^{2}}{16}-\frac {31 x^{3}}{144}-\frac {173 x^{4}}{4608}-\frac {187 x^{5}}{38400}-\frac {463 x^{6}}{921600}-\frac {971 x^{7}}{22579200}+O\left (x^{8}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right )+c_{2} \left (\left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) \ln \left (x \right )-\frac {3 x}{2}-\frac {13 x^{2}}{16}-\frac {31 x^{3}}{144}-\frac {173 x^{4}}{4608}-\frac {187 x^{5}}{38400}-\frac {463 x^{6}}{921600}-\frac {971 x^{7}}{22579200}+O\left (x^{8}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right )+c_{2} \left (\left (1+x +\frac {3 x^{2}}{8}+\frac {x^{3}}{12}+\frac {5 x^{4}}{384}+\frac {x^{5}}{640}+\frac {7 x^{6}}{46080}+\frac {x^{7}}{80640}+O\left (x^{8}\right )\right ) \ln \left (x \right )-\frac {3 x}{2}-\frac {13 x^{2}}{16}-\frac {31 x^{3}}{144}-\frac {173 x^{4}}{4608}-\frac {187 x^{5}}{38400}-\frac {463 x^{6}}{921600}-\frac {971 x^{7}}{22579200}+O\left (x^{8}\right )\right ) \] Verified OK.

4.8.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 2 x \left (\frac {d}{d x}y^{\prime }\right )+\left (2-x \right ) y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\frac {y}{x}+\frac {\left (x -2\right ) y^{\prime }}{2 x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }-\frac {\left (x -2\right ) y^{\prime }}{2 x}-\frac {y}{x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {x -2}{2 x}, P_{3}\left (x \right )=-\frac {1}{x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 2 x \left (\frac {d}{d x}y^{\prime }\right )+\left (2-x \right ) y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 2 a_{0} r^{2} x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (2 a_{k +1} \left (k +1+r \right )^{2}-a_{k} \left (k +r +2\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & 2 r^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 2 a_{k +1} \left (k +1\right )^{2}-a_{k} \left (k +2\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {a_{k} \left (k +2\right )}{2 \left (k +1\right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {a_{k} \left (k +2\right )}{2 \left (k +1\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {a_{k} \left (k +2\right )}{2 \left (k +1\right )^{2}}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 71

Order:=8; 
dsolve(2*x*diff(y(x),x$2)+(2-x)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1+x +\frac {3}{8} x^{2}+\frac {1}{12} x^{3}+\frac {5}{384} x^{4}+\frac {1}{640} x^{5}+\frac {7}{46080} x^{6}+\frac {1}{80640} x^{7}+\operatorname {O}\left (x^{8}\right )\right )+\left (-\frac {3}{2} x -\frac {13}{16} x^{2}-\frac {31}{144} x^{3}-\frac {173}{4608} x^{4}-\frac {187}{38400} x^{5}-\frac {463}{921600} x^{6}-\frac {971}{22579200} x^{7}+\operatorname {O}\left (x^{8}\right )\right ) c_{2} \]

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 151

AsymptoticDSolveValue[2*x*y''[x]+(2-x)*y'[x]-2*y[x]==0,y[x],{x,0,7}]
 

\[ y(x)\to c_1 \left (\frac {x^7}{80640}+\frac {7 x^6}{46080}+\frac {x^5}{640}+\frac {5 x^4}{384}+\frac {x^3}{12}+\frac {3 x^2}{8}+x+1\right )+c_2 \left (-\frac {971 x^7}{22579200}-\frac {463 x^6}{921600}-\frac {187 x^5}{38400}-\frac {173 x^4}{4608}-\frac {31 x^3}{144}-\frac {13 x^2}{16}+\left (\frac {x^7}{80640}+\frac {7 x^6}{46080}+\frac {x^5}{640}+\frac {5 x^4}{384}+\frac {x^3}{12}+\frac {3 x^2}{8}+x+1\right ) \log (x)-\frac {3 x}{2}\right ) \]