1.4 problem 9

1.4.1 Maple step by step solution

Internal problem ID [815]
Internal file name [OUTPUT/815_Sunday_June_05_2022_01_50_27_AM_43069891/index.tex]

Book: Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section: Chapter 4.1, Higher order linear differential equations. General theory. page 173
Problem number: 9.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

\[ \boxed {y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y=0} \] The characteristic equation is \[ \lambda ^{3}+2 \lambda ^{2}-\lambda -2 = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= 1\\ \lambda _2 &= -2\\ \lambda _3 &= -1 \end {align*}

Therefore the homogeneous solution is \[ y_h(t)=c_{1} {\mathrm e}^{-t}+c_{2} {\mathrm e}^{-2 t}+c_{3} {\mathrm e}^{t} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= {\mathrm e}^{-t}\\ y_2 &= {\mathrm e}^{-2 t}\\ y_3 &= {\mathrm e}^{t} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{-t}+c_{2} {\mathrm e}^{-2 t}+c_{3} {\mathrm e}^{t} \\ \end{align*}

Verification of solutions

\[ y = c_{1} {\mathrm e}^{-t}+c_{2} {\mathrm e}^{-2 t}+c_{3} {\mathrm e}^{t} \] Verified OK.

1.4.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }+2 y^{\prime \prime }-y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=y^{\prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{3}^{\prime }\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{3}^{\prime }\left (t \right )=-2 y_{3}\left (t \right )+y_{2}\left (t \right )+2 y_{1}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=y_{1}^{\prime }\left (t \right ), y_{3}\left (t \right )=y_{2}^{\prime }\left (t \right ), y_{3}^{\prime }\left (t \right )=-2 y_{3}\left (t \right )+y_{2}\left (t \right )+2 y_{1}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 1 & -2 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-2, \left [\begin {array}{c} \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]\right ], \left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-2, \left [\begin {array}{c} \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{-t}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{-2 t}\cdot \left [\begin {array}{c} \frac {1}{4} \\ -\frac {1}{2} \\ 1 \end {array}\right ]+c_{2} {\mathrm e}^{-t}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]+c_{3} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {\left (4 c_{3} {\mathrm e}^{3 t}+4 c_{2} {\mathrm e}^{t}+c_{1} \right ) {\mathrm e}^{-2 t}}{4} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 21

dsolve(diff(y(t),t$3)+2*diff(y(t),t$2)-diff(y(t),t)-2*y(t)=0,y(t), singsol=all)
 

\[ y \left (t \right ) = \left (c_{1} {\mathrm e}^{3 t}+c_{3} {\mathrm e}^{t}+c_{2} \right ) {\mathrm e}^{-2 t} \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 28

DSolve[y'''[t]+2*y''[t]-y'[t]-2*y[t]==0,y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to e^{-2 t} \left (c_2 e^t+c_3 e^{3 t}+c_1\right ) \]