1.10 problem 4(b)

1.10.1 Existence and uniqueness analysis
1.10.2 Solving as quadrature ode
1.10.3 Maple step by step solution

Internal problem ID [878]
Internal file name [OUTPUT/878_Sunday_June_05_2022_01_53_02_AM_44411204/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 1, Introduction. Section 1.2 Page 14
Problem number: 4(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }=x \sin \left (x^{2}\right )} \] With initial conditions \begin {align*} \left [y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right ) = 1\right ] \end {align*}

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=0\\ q(x) &=x \sin \left (x^{2}\right ) \end {align*}

Hence the ode is \begin {align*} y^{\prime } = x \sin \left (x^{2}\right ) \end {align*}

The domain of \(p(x)=0\) is \[ \{-\infty

1.10.2 Solving as quadrature ode

Integrating both sides gives \begin {align*} y &= \int { x \sin \left (x^{2}\right )\,\mathop {\mathrm {d}x}}\\ &= -\frac {\cos \left (x^{2}\right )}{2}+c_{1} \end {align*}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=\frac {\sqrt {2}\, \sqrt {\pi }}{2}\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration. \begin {align*} 1 = c_{1} \end {align*}

The solutions are \begin {align*} c_{1} = 1 \end {align*}

Trying the constant \begin {align*} c_{1} = 1 \end {align*}

Substituting this in the general solution gives \begin {align*} y&=-\frac {\cos \left (x^{2}\right )}{2}+1 \end {align*}

The constant \(c_{1} = 1\) gives valid solution.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\cos \left (x^{2}\right )}{2}+1 \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = -\frac {\cos \left (x^{2}\right )}{2}+1 \] Verified OK.

1.10.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=x \sin \left (x^{2}\right ), y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int x \sin \left (x^{2}\right )d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=-\frac {\cos \left (x^{2}\right )}{2}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-\frac {\cos \left (x^{2}\right )}{2}+c_{1} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (\frac {\sqrt {2}\, \sqrt {\pi }}{2}\right )=1 \\ {} & {} & 1=c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =1 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} c_{1} =1\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y=-\frac {\cos \left (x^{2}\right )}{2}+1 \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=-\frac {\cos \left (x^{2}\right )}{2}+1 \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 12

dsolve([diff(y(x),x) = x*sin(x^2),y(sqrt(1/2*Pi)) = 1],y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {\cos \left (x^{2}\right )}{2}+1 \]

Solution by Mathematica

Time used: 0.012 (sec). Leaf size: 15

DSolve[{y'[x] == x*Sin[x^2],y[Sqrt[Pi/2]]==1},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to 1-\frac {\cos \left (x^2\right )}{2} \]