9.23 problem 23

9.23.1 Maple step by step solution

Internal problem ID [1129]
Internal file name [OUTPUT/1130_Sunday_June_05_2022_02_03_13_AM_79199182/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_2", "second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

\[ \boxed {x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y=0} \] Given that one solution of the ode is \begin {align*} y_1 &= x^{a} \end {align*}

Given one basis solution \(y_{1}\left (x \right )\), then the second basis solution is given by \[ y_{2}\left (x \right ) = y_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d x \right )}}{y_{1}^{2}}d x \right ) \] Where \(p(x)\) is the coefficient of \(y^{\prime }\) when the ode is written in the normal form \[ y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = f \left (x \right ) \] Looking at the ode to solve shows that \[ p \left (x \right ) = \frac {-2 a +1}{x} \] Therefore \begin{align*} y_{2}\left (x \right ) &= x^{a} \left (\int {\mathrm e}^{-\left (\int \frac {-2 a +1}{x}d x \right )} x^{-2 a}d x \right ) \\ y_{2}\left (x \right ) &= x^{a} \int \frac {{\mathrm e}^{-\left (-2 a +1\right ) \ln \left (x \right )}}{x^{2 a}} , dx \\ y_{2}\left (x \right ) &= x^{a} \left (\int \frac {1}{x}d x \right ) \\ y_{2}\left (x \right ) &= x^{a} \ln \left (x \right ) \\ \end{align*} Hence the solution is \begin{align*} y &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{a}+c_{2} x^{a} \ln \left (x \right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{a}+c_{2} x^{a} \ln \left (x \right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{a}+c_{2} x^{a} \ln \left (x \right ) \] Verified OK.

9.23.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime }+\left (-2 a x +x \right ) y^{\prime }+a^{2} y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {a^{2} y}{x^{2}}+\frac {\left (2 a -1\right ) y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }-\frac {\left (2 a -1\right ) y^{\prime }}{x}+\frac {a^{2} y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=-\frac {2 a -1}{x}, P_{3}\left (x \right )=\frac {a^{2}}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-2 a +1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=a^{2} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (a -k -r \right )^{2} x^{k +r}=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r =0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (a -k \right )^{2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k}=0 \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k}=0\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve([x^2*diff(y(x),x$2)-(2*a-1)*x*diff(y(x),x)+a^2*y(x)=0,x^a],singsol=all)
 

\[ y \left (x \right ) = \left (c_{2} \ln \left (x \right )+c_{1} \right ) x^{a} \]

Solution by Mathematica

Time used: 0.021 (sec). Leaf size: 18

DSolve[x^2*y''[x]-(2*a-1)*x*y'[x]+a^2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to x^a (a c_2 \log (x)+c_1) \]