13.26 problem 29

13.26.1 Maple step by step solution

Internal problem ID [1267]
Internal file name [OUTPUT/1268_Sunday_June_05_2022_02_07_29_AM_65047568/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II. Exercises 7.3. Page 338
Problem number: 29.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {\left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y=0} \] With the expansion point for the power series method at \(x = 0\).

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let \[ y^{\prime \prime }=f\left ( x,y,y^{\prime }\right ) \] Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to \(0\) by change of variables) and assuming \(f\left ( x,y,y^{\prime }\right ) \) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left ( x_{0}\right ) =y_{0}\) and \(y^{\prime }\left ( x_{0}\right ) =y_{0}^{\prime }\). Using Taylor series gives\begin {align*} y\left ( x\right ) & =y\left ( x_{0}\right ) +\left ( x-x_{0}\right ) y^{\prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{2}}{2}y^{\prime \prime }\left ( x_{0}\right ) +\frac {\left ( x-x_{0}\right ) ^{3}}{3!}y^{\prime \prime \prime }\left ( x_{0}\right ) +\cdots \\ & =y_{0}+xy_{0}^{\prime }+\frac {x^{2}}{2}\left . f\right \vert _{x_{0},y_{0},y_{0}^{\prime }}+\frac {x^{3}}{3!}\left . f^{\prime }\right \vert _{x_{0},y_{0},y_{0}^{\prime }}+\cdots \\ & =y_{0}+xy_{0}^{\prime }+\sum _{n=0}^{\infty }\frac {x^{n+2}}{\left ( n+2\right ) !}\left . \frac {d^{n}f}{dx^{n}}\right \vert _{x_{0},y_{0},y_{0}^{\prime }} \end {align*}

But \begin {align} \frac {df}{dx} & =\frac {\partial f}{\partial x}\frac {dx}{dx}+\frac {\partial f}{\partial y}\frac {dy}{dx}+\frac {\partial f}{\partial y^{\prime }}\frac {dy^{\prime }}{dx}\tag {1}\\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}y^{\prime \prime }\\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}f\\ \frac {d^{2}f}{dx^{2}} & =\frac {d}{dx}\left ( \frac {df}{dx}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {df}{dx}\right ) +\frac {\partial }{\partial y}\left ( \frac {df}{dx}\right ) y^{\prime }+\frac {\partial }{\partial y^{\prime }}\left ( \frac {df}{dx}\right ) f\tag {2}\\ \frac {d^{3}f}{dx^{3}} & =\frac {d}{dx}\left ( \frac {d^{2}f}{dx^{2}}\right ) \nonumber \\ & =\frac {\partial }{\partial x}\left ( \frac {d^{2}f}{dx^{2}}\right ) +\left ( \frac {\partial }{\partial y}\frac {d^{2}f}{dx^{2}}\right ) y^{\prime }+\frac {\partial }{\partial y^{\prime }}\left ( \frac {d^{2}f}{dx^{2}}\right ) f\tag {3}\\ & \vdots \nonumber \end {align}

And so on. Hence if we name \(F_{0}=f\left ( x,y,y^{\prime }\right ) \) then the above can be written as \begin {align} F_{0} & =f\left ( x,y,y^{\prime }\right ) \tag {4}\\ F_{1} & =\frac {df}{dx}\nonumber \\ & =\frac {dF_{0}}{dx}\nonumber \\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}y^{\prime \prime }\nonumber \\ & =\frac {\partial f}{\partial x}+\frac {\partial f}{\partial y}y^{\prime }+\frac {\partial f}{\partial y^{\prime }}f\tag {5}\\ & =\frac {\partial F_{0}}{\partial x}+\frac {\partial F_{0}}{\partial y}y^{\prime }+\frac {\partial F_{0}}{\partial y^{\prime }}F_{0}\nonumber \\ F_{2} & =\frac {d}{dx}\left ( \frac {d}{dx}f\right ) \nonumber \\ & =\frac {d}{dx}\left ( F_{1}\right ) \nonumber \\ & =\frac {\partial }{\partial x}F_{1}+\left ( \frac {\partial F_{1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{1}}{\partial y^{\prime }}\right ) y^{\prime \prime }\nonumber \\ & =\frac {\partial }{\partial x}F_{1}+\left ( \frac {\partial F_{1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{1}}{\partial y^{\prime }}\right ) F_{0}\nonumber \\ & \vdots \nonumber \\ F_{n} & =\frac {d}{dx}\left ( F_{n-1}\right ) \nonumber \\ & =\frac {\partial }{\partial x}F_{n-1}+\left ( \frac {\partial F_{n-1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{n-1}}{\partial y^{\prime }}\right ) y^{\prime \prime }\nonumber \\ & =\frac {\partial }{\partial x}F_{n-1}+\left ( \frac {\partial F_{n-1}}{\partial y}\right ) y^{\prime }+\left ( \frac {\partial F_{n-1}}{\partial y^{\prime }}\right ) F_{0} \tag {6} \end {align}

Therefore (6) can be used from now on along with \begin {equation} y\left ( x\right ) =y_{0}+xy_{0}^{\prime }+\sum _{n=0}^{\infty }\frac {x^{n+2}}{\left ( n+2\right ) !}\left . F_{n}\right \vert _{x_{0},y_{0},y_{0}^{\prime }} \tag {7} \end {equation} To find \(y\left ( x\right ) \) series solution around \(x=0\). Hence \begin {align*} F_0 &= -\frac {y^{\prime } \delta x +y^{\prime } \gamma +\epsilon y}{\beta \,x^{2}+\alpha x +1}\\ F_1 &= \frac {d F_0}{dx} \\ &= \frac {\partial F_{0}}{\partial x}+ \frac {\partial F_{0}}{\partial y} y^{\prime }+ \frac {\partial F_{0}}{\partial y^{\prime }} F_0 \\ &= \frac {\left (\left (-\beta \epsilon +\delta \left (\beta +\delta \right )\right ) x^{2}+\left (-\alpha \epsilon +2 \gamma \left (\beta +\delta \right )\right ) x +\alpha \gamma +\gamma ^{2}-\delta -\epsilon \right ) y^{\prime }+2 \left (\left (\beta +\frac {\delta }{2}\right ) x +\frac {\alpha }{2}+\frac {\gamma }{2}\right ) y \epsilon }{\left (\beta \,x^{2}+\alpha x +1\right )^{2}}\\ F_2 &= \frac {d F_1}{dx} \\ &= \frac {\partial F_{1}}{\partial x}+ \frac {\partial F_{1}}{\partial y} y^{\prime }+ \frac {\partial F_{1}}{\partial y^{\prime }} F_1 \\ &= \frac {\left (-2 \left (\beta +\frac {\delta }{2}\right ) \left (-2 \beta \epsilon +\delta \left (\beta +\delta \right )\right ) x^{3}+\left (\left (\left (6 \alpha +2 \gamma \right ) \beta +2 \alpha \delta \right ) \epsilon -6 \left (\beta +\frac {\delta }{2}\right ) \left (\beta +\delta \right ) \gamma \right ) x^{2}+\left (\left (2 \alpha ^{2}+2 \alpha \gamma +4 \beta +2 \delta \right ) \epsilon -6 \left (\beta +\frac {\delta }{2}\right ) \left (\alpha \gamma +\gamma ^{2}-\delta \right )\right ) x +\left (2 \alpha +2 \gamma \right ) \epsilon +2 \beta \gamma +\left (2 \alpha +3 \gamma \right ) \delta -2 \left (\alpha +\gamma \right ) \left (\alpha +\frac {\gamma }{2}\right ) \gamma \right ) y^{\prime }-6 y \epsilon \left (\left (\beta ^{2}+\frac {2}{3} \beta \delta -\frac {1}{6} \beta \epsilon +\frac {1}{6} \delta ^{2}\right ) x^{2}+\left (-\frac {\alpha \epsilon }{6}+\left (\alpha +\gamma \right ) \beta +\frac {\delta \left (\alpha +2 \gamma \right )}{6}\right ) x +\frac {\alpha ^{2}}{3}+\frac {\alpha \gamma }{2}+\frac {\gamma ^{2}}{6}-\frac {\beta }{3}-\frac {\delta }{3}-\frac {\epsilon }{6}\right )}{\left (\beta \,x^{2}+\alpha x +1\right )^{3}}\\ F_3 &= \frac {d F_2}{dx} \\ &= \frac {\partial F_{2}}{\partial x}+ \frac {\partial F_{2}}{\partial y} y^{\prime }+ \frac {\partial F_{2}}{\partial y^{\prime }} F_2 \\ &= \frac {\left (\left (\beta ^{2} \epsilon ^{2}+\left (-18 \beta ^{3}-14 \delta \,\beta ^{2}-3 \beta \,\delta ^{2}\right ) \epsilon +6 \beta ^{3} \delta +11 \beta ^{2} \delta ^{2}+6 \beta \,\delta ^{3}+\delta ^{4}\right ) x^{4}+\left (2 \beta \alpha \,\epsilon ^{2}+\left (\left (-36 \alpha -18 \gamma \right ) \beta ^{2}-19 \left (\alpha +\frac {6 \gamma }{19}\right ) \delta \beta -3 \alpha \,\delta ^{2}\right ) \epsilon +24 \left (\beta +\frac {\delta }{2}\right ) \left (\beta +\frac {\delta }{3}\right ) \left (\beta +\delta \right ) \gamma \right ) x^{3}+\left (\left (\alpha ^{2}+2 \beta \right ) \epsilon ^{2}+\left (-12 \beta ^{2}+\left (-24 \alpha ^{2}-27 \alpha \gamma -3 \gamma ^{2}-10 \delta \right ) \beta -3 \delta ^{2}+\left (-5 \alpha ^{2}-6 \alpha \gamma \right ) \delta \right ) \epsilon +36 \left (\beta +\frac {\delta }{2}\right ) \left (\beta +\frac {\delta }{3}\right ) \left (\alpha \gamma +\gamma ^{2}-\delta \right )\right ) x^{2}+\left (2 \alpha \,\epsilon ^{2}+\left (\left (-12 \alpha -18 \gamma \right ) \beta +\left (-\alpha -6 \gamma \right ) \delta -6 \alpha \left (\alpha +\gamma \right ) \left (\alpha +\frac {\gamma }{2}\right )\right ) \epsilon -24 \left (\beta \gamma +\left (\alpha +\frac {3 \gamma }{2}\right ) \delta -\left (\alpha +\gamma \right ) \left (\alpha +\frac {\gamma }{2}\right ) \gamma \right ) \left (\beta +\frac {\delta }{3}\right )\right ) x +\epsilon ^{2}+\left (-6 \alpha ^{2}-9 \alpha \gamma -3 \gamma ^{2}+6 \beta +4 \delta \right ) \epsilon +\left (-12 \alpha \gamma -8 \gamma ^{2}+6 \delta \right ) \beta +3 \delta ^{2}+\left (-6 \alpha ^{2}-14 \alpha \gamma -6 \gamma ^{2}\right ) \delta +6 \alpha ^{3} \gamma +11 \alpha ^{2} \gamma ^{2}+6 \alpha \,\gamma ^{3}+\gamma ^{4}\right ) y^{\prime }+24 \left (\left (\beta +\frac {\delta }{4}\right ) \left (\beta ^{2}+\frac {1}{2} \beta \delta -\frac {1}{3} \beta \epsilon +\frac {1}{6} \delta ^{2}\right ) x^{3}+\left (\left (\left (-\frac {\alpha }{2}-\frac {\gamma }{12}\right ) \beta -\frac {\alpha \delta }{12}\right ) \epsilon +\left (\frac {3 \gamma }{2}+\frac {3 \alpha }{2}\right ) \beta ^{2}+\frac {3 \delta \left (\frac {19 \gamma }{9}+\alpha \right ) \beta }{8}+\frac {\delta ^{2} \left (3 \gamma +\alpha \right )}{24}\right ) x^{2}+\left (\left (-\frac {1}{12} \delta -\frac {1}{6} \alpha ^{2}-\frac {1}{3} \beta -\frac {1}{12} \alpha \gamma \right ) \epsilon -\beta ^{2}+\left (\alpha ^{2}+\frac {1}{2} \gamma ^{2}-\frac {13}{12} \delta +\frac {3}{2} \alpha \gamma \right ) \beta +\frac {\delta \left (-\frac {5 \delta }{2}+\left (3 \gamma +\alpha \right ) \left (\alpha +\frac {\gamma }{2}\right )\right )}{12}\right ) x +\left (-\frac {\gamma }{12}-\frac {\alpha }{6}\right ) \epsilon +\left (-\frac {\gamma }{3}-\frac {\alpha }{2}\right ) \beta +\left (-\frac {3 \alpha }{8}-\frac {5 \gamma }{24}\right ) \delta +\frac {\left (\alpha +\gamma \right ) \left (\alpha +\frac {\gamma }{2}\right ) \left (\alpha +\frac {\gamma }{3}\right )}{4}\right ) y \epsilon }{\left (\beta \,x^{2}+\alpha x +1\right )^{4}}\\ F_4 &= \frac {d F_3}{dx} \\ &= \frac {\partial F_{3}}{\partial x}+ \frac {\partial F_{3}}{\partial y} y^{\prime }+ \frac {\partial F_{3}}{\partial y^{\prime }} F_3 \\ &= \text {Expression too large to display} \end {align*}

And so on. Evaluating all the above at initial conditions \(x = 0\) and \(y \left (0\right ) = y \left (0\right )\) and \(y^{\prime }\left (0\right ) = y^{\prime }\left (0\right )\) gives \begin {align*} F_0 &= -y \left (0\right ) \epsilon -y^{\prime }\left (0\right ) \gamma \\ F_1 &= y \left (0\right ) \alpha \epsilon +y \left (0\right ) \epsilon \gamma +y^{\prime }\left (0\right ) \alpha \gamma +y^{\prime }\left (0\right ) \gamma ^{2}-y^{\prime }\left (0\right ) \delta -y^{\prime }\left (0\right ) \epsilon \\ F_2 &= -2 y \left (0\right ) \alpha ^{2} \epsilon -3 y \left (0\right ) \alpha \epsilon \gamma -y \left (0\right ) \epsilon \,\gamma ^{2}-2 y^{\prime }\left (0\right ) \alpha ^{2} \gamma -3 y^{\prime }\left (0\right ) \alpha \,\gamma ^{2}-y^{\prime }\left (0\right ) \gamma ^{3}+2 y \left (0\right ) \beta \epsilon +2 y \left (0\right ) \epsilon \delta +\epsilon ^{2} y \left (0\right )+2 y^{\prime }\left (0\right ) \alpha \delta +2 y^{\prime }\left (0\right ) \alpha \epsilon +2 y^{\prime }\left (0\right ) \beta \gamma +3 y^{\prime }\left (0\right ) \delta \gamma +2 y^{\prime }\left (0\right ) \epsilon \gamma \\ F_3 &= -6 y^{\prime }\left (0\right ) \delta \,\gamma ^{2}-3 y^{\prime }\left (0\right ) \epsilon \,\gamma ^{2}+6 y^{\prime }\left (0\right ) \beta \epsilon +4 y^{\prime }\left (0\right ) \delta \epsilon +11 y^{\prime }\left (0\right ) \alpha ^{2} \gamma ^{2}+3 y^{\prime }\left (0\right ) \delta ^{2}+y^{\prime }\left (0\right ) \gamma ^{4}+y^{\prime }\left (0\right ) \epsilon ^{2}+6 y^{\prime }\left (0\right ) \alpha ^{3} \gamma -6 y^{\prime }\left (0\right ) \alpha ^{2} \delta +6 y^{\prime }\left (0\right ) \beta \delta +11 y \left (0\right ) \alpha ^{2} \epsilon \gamma +6 y \left (0\right ) \alpha \epsilon \,\gamma ^{2}-9 y \left (0\right ) \alpha \epsilon \delta +6 y^{\prime }\left (0\right ) \alpha \,\gamma ^{3}-6 y^{\prime }\left (0\right ) \alpha ^{2} \epsilon -8 y^{\prime }\left (0\right ) \beta \,\gamma ^{2}-12 y \left (0\right ) \alpha \beta \epsilon -12 y^{\prime }\left (0\right ) \alpha \beta \gamma +6 y \left (0\right ) \alpha ^{3} \epsilon -8 y \left (0\right ) \beta \epsilon \gamma -5 y \left (0\right ) \epsilon \delta \gamma +y \left (0\right ) \epsilon \,\gamma ^{3}-4 \epsilon ^{2} y \left (0\right ) \alpha -2 \epsilon ^{2} y \left (0\right ) \gamma -14 y^{\prime }\left (0\right ) \alpha \delta \gamma -9 y^{\prime }\left (0\right ) \alpha \epsilon \gamma \\ F_4 &= -y^{\prime }\left (0\right ) \gamma ^{5}-32 y^{\prime }\left (0\right ) \beta \epsilon \gamma -15 y^{\prime }\left (0\right ) \delta \epsilon \gamma +70 y^{\prime }\left (0\right ) \alpha ^{2} \delta \gamma +44 y^{\prime }\left (0\right ) \alpha ^{2} \epsilon \gamma +80 y^{\prime }\left (0\right ) \alpha \beta \,\gamma ^{2}+50 y^{\prime }\left (0\right ) \alpha \delta \,\gamma ^{2}+24 y^{\prime }\left (0\right ) \alpha \epsilon \,\gamma ^{2}-24 y \left (0\right ) \alpha ^{4} \epsilon -24 y^{\prime }\left (0\right ) \alpha ^{4} \gamma +24 y^{\prime }\left (0\right ) \alpha ^{3} \delta -24 y \left (0\right ) \beta ^{2} \epsilon -24 y^{\prime }\left (0\right ) \beta ^{2} \gamma -y \left (0\right ) \epsilon \,\gamma ^{4}+18 \epsilon ^{2} y \left (0\right ) \alpha ^{2}+3 \epsilon ^{2} y \left (0\right ) \gamma ^{2}-14 \epsilon ^{2} y \left (0\right ) \beta -8 y \left (0\right ) \epsilon \,\delta ^{2}-6 \epsilon ^{2} y \left (0\right ) \delta -6 y^{\prime }\left (0\right ) \alpha \,\epsilon ^{2}-15 y^{\prime }\left (0\right ) \delta ^{2} \gamma -3 y^{\prime }\left (0\right ) \epsilon ^{2} \gamma -50 y^{\prime }\left (0\right ) \alpha ^{3} \gamma ^{2}-35 y^{\prime }\left (0\right ) \alpha ^{2} \gamma ^{3}-10 y^{\prime }\left (0\right ) \alpha \,\gamma ^{4}+24 y^{\prime }\left (0\right ) \alpha ^{3} \epsilon -\epsilon ^{3} y \left (0\right )+20 y^{\prime }\left (0\right ) \beta \,\gamma ^{3}+10 y^{\prime }\left (0\right ) \delta \,\gamma ^{3}+4 y^{\prime }\left (0\right ) \epsilon \,\gamma ^{3}-20 y^{\prime }\left (0\right ) \alpha \,\delta ^{2}-48 y^{\prime }\left (0\right ) \alpha \beta \epsilon -26 y^{\prime }\left (0\right ) \alpha \delta \epsilon -50 y^{\prime }\left (0\right ) \beta \delta \gamma +72 y \left (0\right ) \alpha ^{2} \beta \epsilon +72 y^{\prime }\left (0\right ) \alpha ^{2} \beta \gamma -48 y^{\prime }\left (0\right ) \alpha \beta \delta +80 y \left (0\right ) \alpha \beta \epsilon \gamma +41 y \left (0\right ) \alpha \epsilon \delta \gamma -50 y \left (0\right ) \alpha ^{3} \epsilon \gamma -35 y \left (0\right ) \alpha ^{2} \epsilon \,\gamma ^{2}-10 y \left (0\right ) \alpha \epsilon \,\gamma ^{3}+44 y \left (0\right ) \alpha ^{2} \epsilon \delta +15 \epsilon ^{2} y \left (0\right ) \gamma \alpha +20 y \left (0\right ) \beta \epsilon \,\gamma ^{2}+9 y \left (0\right ) \epsilon \delta \,\gamma ^{2}-32 y \left (0\right ) \beta \epsilon \delta \end {align*}

Substituting all the above in (7) and simplifying gives the solution as \[ \text {Expression too large to display} \] Since the expansion point \(x = 0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be \[ \left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y = 0 \] Let the solution be represented as power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n} \] Then \begin {align*} y^{\prime } &= \moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2} \end {align*}

Substituting the above back into the ode gives \begin {align*} \left (\beta \,x^{2}+\alpha x +1\right ) \left (\moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2}\right )+\left (\delta x +\gamma \right ) \left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n -1}\right )+\epsilon \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right ) = 0\tag {1} \end {align*}

Which simplifies to \begin{equation} \tag{2} \left (\moverset {\infty }{\munderset {n =2}{\sum }}x^{n} a_{n} \beta n \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}n \alpha \,x^{n -1} a_{n} \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n} \delta \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}n \gamma \,x^{n -1} a_{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\epsilon a_{n} x^{n}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =2}{\sum }}n \alpha \,x^{n -1} a_{n} \left (n -1\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\alpha \left (n +1\right ) a_{n +1} n \,x^{n} \\ \moverset {\infty }{\munderset {n =2}{\sum }}n \left (n -1\right ) a_{n} x^{n -2} &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +2\right ) a_{n +2} \left (n +1\right ) x^{n} \\ \moverset {\infty }{\munderset {n =1}{\sum }}n \gamma \,x^{n -1} a_{n} &= \moverset {\infty }{\munderset {n =0}{\sum }}\gamma \left (n +1\right ) a_{n +1} x^{n} \\ \end{align*} Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\). \begin{equation} \tag{3} \left (\moverset {\infty }{\munderset {n =2}{\sum }}x^{n} a_{n} \beta n \left (n -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}\alpha \left (n +1\right ) a_{n +1} n \,x^{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +2\right ) a_{n +2} \left (n +1\right ) x^{n}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}n a_{n} x^{n} \delta \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\gamma \left (n +1\right ) a_{n +1} x^{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\epsilon a_{n} x^{n}\right ) = 0 \end{equation} \(n=0\) gives \[ \epsilon a_{0}+\gamma a_{1}+2 a_{2}=0 \] \[ a_{2} = -\frac {\epsilon a_{0}}{2}-\frac {\gamma a_{1}}{2} \] \(n=1\) gives \[ 2 \alpha a_{2}+\delta a_{1}+\epsilon a_{1}+2 \gamma a_{2}+6 a_{3}=0 \] Which after substituting earlier equations, simplifies to \[ a_{3} = \frac {1}{6} \alpha \epsilon a_{0}+\frac {1}{6} \alpha \gamma a_{1}+\frac {1}{6} \gamma \epsilon a_{0}+\frac {1}{6} \gamma ^{2} a_{1}-\frac {1}{6} \delta a_{1}-\frac {1}{6} \epsilon a_{1} \] For \(2\le n\), the recurrence equation is \begin{equation} \tag{4} \beta n a_{n} \left (n -1\right )+\alpha \left (n +1\right ) a_{n +1} n +\left (n +2\right ) a_{n +2} \left (n +1\right )+\delta n a_{n}+\gamma \left (n +1\right ) a_{n +1}+\epsilon a_{n} = 0 \end{equation} Solving for \(a_{n +2}\), gives \begin{align*} \tag{5} a_{n +2}&= -\frac {\alpha \,n^{2} a_{n +1}+\beta \,n^{2} a_{n}+\alpha n a_{n +1}-\beta n a_{n}+\delta n a_{n}+\gamma n a_{n +1}+\epsilon a_{n}+\gamma a_{n +1}}{\left (n +2\right ) \left (n +1\right )} \\ &= -\frac {\left (\beta \,n^{2}-\beta n +\delta n +\epsilon \right ) a_{n}}{\left (n +2\right ) \left (n +1\right )}-\frac {\left (\alpha \,n^{2}+\alpha n +\gamma n +\gamma \right ) a_{n +1}}{\left (n +2\right ) \left (n +1\right )} \\ \end{align*} For \(n = 2\) the recurrence equation gives \[ 6 \alpha a_{3}+2 \beta a_{2}+2 \delta a_{2}+\epsilon a_{2}+3 \gamma a_{3}+12 a_{4} = 0 \] Which after substituting the earlier terms found becomes \[ a_{4} = -\frac {1}{12} \alpha ^{2} \epsilon a_{0}-\frac {1}{12} \alpha ^{2} \gamma a_{1}-\frac {1}{8} \alpha \gamma \epsilon a_{0}-\frac {1}{8} \alpha \,\gamma ^{2} a_{1}+\frac {1}{12} \alpha \delta a_{1}+\frac {1}{12} \alpha \epsilon a_{1}+\frac {1}{12} \beta \epsilon a_{0}+\frac {1}{12} \beta \gamma a_{1}+\frac {1}{12} \delta \epsilon a_{0}+\frac {1}{8} \delta \gamma a_{1}+\frac {1}{24} \epsilon ^{2} a_{0}+\frac {1}{12} \epsilon \gamma a_{1}-\frac {1}{24} \gamma ^{2} \epsilon a_{0}-\frac {1}{24} \gamma ^{3} a_{1} \] For \(n = 3\) the recurrence equation gives \[ 12 \alpha a_{4}+6 \beta a_{3}+3 \delta a_{3}+\epsilon a_{3}+4 \gamma a_{4}+20 a_{5} = 0 \] Which after substituting the earlier terms found becomes \[ a_{5} = \frac {1}{20} \beta \epsilon a_{1}-\frac {1}{20} \delta \,\gamma ^{2} a_{1}+\frac {1}{30} \delta \epsilon a_{1}-\frac {1}{60} \gamma \,\epsilon ^{2} a_{0}-\frac {1}{40} \epsilon \,\gamma ^{2} a_{1}+\frac {1}{120} \gamma ^{3} \epsilon a_{0}+\frac {1}{20} \alpha ^{3} \epsilon a_{0}+\frac {1}{20} \alpha ^{3} \gamma a_{1}+\frac {11}{120} \alpha ^{2} \gamma ^{2} a_{1}-\frac {1}{20} \alpha ^{2} \delta a_{1}-\frac {1}{20} \alpha ^{2} \epsilon a_{1}-\frac {1}{30} \alpha \,\epsilon ^{2} a_{0}+\frac {1}{20} \alpha \,\gamma ^{3} a_{1}-\frac {1}{15} \beta \,\gamma ^{2} a_{1}+\frac {1}{20} \beta \delta a_{1}+\frac {11}{120} \alpha ^{2} \gamma \epsilon a_{0}-\frac {1}{10} \alpha \beta \epsilon a_{0}-\frac {1}{10} \alpha \beta \gamma a_{1}-\frac {3}{40} \alpha \delta \epsilon a_{0}-\frac {7}{60} \alpha \delta \gamma a_{1}-\frac {3}{40} \alpha \epsilon \gamma a_{1}+\frac {1}{20} \alpha \,\gamma ^{2} \epsilon a_{0}-\frac {1}{15} \beta \gamma \epsilon a_{0}-\frac {1}{24} \delta \gamma \epsilon a_{0}+\frac {1}{40} \delta ^{2} a_{1}+\frac {1}{120} \epsilon ^{2} a_{1}+\frac {1}{120} \gamma ^{4} a_{1} \] For \(n = 4\) the recurrence equation gives \[ 20 \alpha a_{5}+12 \beta a_{4}+4 \delta a_{4}+\epsilon a_{4}+5 \gamma a_{5}+30 a_{6} = 0 \] Which after substituting the earlier terms found becomes \[ a_{6} = -\frac {1}{30} \alpha ^{4} \epsilon a_{0}-\frac {1}{30} \alpha ^{4} \gamma a_{1}-\frac {5}{72} \alpha ^{3} \gamma ^{2} a_{1}+\frac {1}{30} \alpha ^{3} \delta a_{1}+\frac {1}{30} \alpha ^{3} \epsilon a_{1}+\frac {1}{40} \alpha ^{2} \epsilon ^{2} a_{0}-\frac {7}{144} \alpha ^{2} \gamma ^{3} a_{1}-\frac {1}{36} \alpha \,\delta ^{2} a_{1}-\frac {1}{120} \alpha \,\epsilon ^{2} a_{1}-\frac {1}{72} \alpha \,\gamma ^{3} \epsilon a_{0}+\frac {1}{9} \alpha \beta \,\gamma ^{2} a_{1}-\frac {1}{15} \alpha \beta \delta a_{1}-\frac {5}{72} \alpha ^{3} \gamma \epsilon a_{0}+\frac {1}{10} \alpha ^{2} \beta \epsilon a_{0}+\frac {1}{10} \alpha ^{2} \beta \gamma a_{1}+\frac {11}{180} \alpha ^{2} \delta \epsilon a_{0}+\frac {7}{72} \alpha ^{2} \delta \gamma a_{1}+\frac {11}{180} \alpha ^{2} \epsilon \gamma a_{1}-\frac {7}{144} \alpha ^{2} \gamma ^{2} \epsilon a_{0}-\frac {2}{45} \beta \delta \epsilon a_{0}-\frac {5}{72} \beta \delta \gamma a_{1}-\frac {2}{45} \beta \epsilon \gamma a_{1}+\frac {1}{36} \beta \,\gamma ^{2} \epsilon a_{0}-\frac {1}{48} \delta \epsilon \gamma a_{1}+\frac {1}{80} \delta \,\gamma ^{2} \epsilon a_{0}-\frac {1}{72} \alpha \,\gamma ^{4} a_{1}-\frac {1}{30} \beta ^{2} \epsilon a_{0}-\frac {1}{30} \beta ^{2} \gamma a_{1}-\frac {7}{360} \beta \,\epsilon ^{2} a_{0}+\frac {1}{36} \beta \,\gamma ^{3} a_{1}-\frac {1}{90} \delta ^{2} \epsilon a_{0}-\frac {1}{48} \delta ^{2} \gamma a_{1}-\frac {1}{120} \delta \,\epsilon ^{2} a_{0}+\frac {1}{72} \delta \,\gamma ^{3} a_{1}-\frac {1}{240} \epsilon ^{2} \gamma a_{1}+\frac {1}{240} \gamma ^{2} \epsilon ^{2} a_{0}+\frac {1}{180} \epsilon \,\gamma ^{3} a_{1}-\frac {1}{720} \gamma ^{4} \epsilon a_{0}-\frac {1}{15} \alpha \beta \epsilon a_{1}+\frac {5}{72} \alpha \delta \,\gamma ^{2} a_{1}-\frac {13}{360} \alpha \delta \epsilon a_{1}+\frac {1}{48} \alpha \gamma \,\epsilon ^{2} a_{0}+\frac {1}{30} \alpha \epsilon \,\gamma ^{2} a_{1}-\frac {1}{720} \epsilon ^{3} a_{0}-\frac {1}{720} \gamma ^{5} a_{1}+\frac {1}{9} \alpha \beta \gamma \epsilon a_{0}+\frac {41}{720} \alpha \delta \gamma \epsilon a_{0} \] For \(n = 5\) the recurrence equation gives \[ 30 \alpha a_{6}+20 \beta a_{5}+5 \delta a_{5}+\epsilon a_{5}+6 \gamma a_{6}+42 a_{7} = 0 \] Which after substituting the earlier terms found becomes \[ \text {Expression too large to display} \] And so on. Therefore the solution is \begin {align*} y &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\\ &= a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0} + \dots \end {align*}

Substituting the values for \(a_{n}\) found above, the solution becomes \[ y = a_{0}+a_{1} x +\left (-\frac {\epsilon a_{0}}{2}-\frac {\gamma a_{1}}{2}\right ) x^{2}+\left (\frac {1}{6} \alpha \epsilon a_{0}+\frac {1}{6} \alpha \gamma a_{1}+\frac {1}{6} \gamma \epsilon a_{0}+\frac {1}{6} \gamma ^{2} a_{1}-\frac {1}{6} \delta a_{1}-\frac {1}{6} \epsilon a_{1}\right ) x^{3}+\left (-\frac {1}{12} \alpha ^{2} \epsilon a_{0}-\frac {1}{12} \alpha ^{2} \gamma a_{1}-\frac {1}{8} \alpha \gamma \epsilon a_{0}-\frac {1}{8} \alpha \,\gamma ^{2} a_{1}+\frac {1}{12} \alpha \delta a_{1}+\frac {1}{12} \alpha \epsilon a_{1}+\frac {1}{12} \beta \epsilon a_{0}+\frac {1}{12} \beta \gamma a_{1}+\frac {1}{12} \delta \epsilon a_{0}+\frac {1}{8} \delta \gamma a_{1}+\frac {1}{24} \epsilon ^{2} a_{0}+\frac {1}{12} \epsilon \gamma a_{1}-\frac {1}{24} \gamma ^{2} \epsilon a_{0}-\frac {1}{24} \gamma ^{3} a_{1}\right ) x^{4}+\left (\frac {1}{20} \beta \epsilon a_{1}-\frac {1}{20} \delta \,\gamma ^{2} a_{1}+\frac {1}{30} \delta \epsilon a_{1}-\frac {1}{60} \gamma \,\epsilon ^{2} a_{0}-\frac {1}{40} \epsilon \,\gamma ^{2} a_{1}+\frac {1}{120} \gamma ^{3} \epsilon a_{0}+\frac {1}{20} \alpha ^{3} \epsilon a_{0}+\frac {1}{20} \alpha ^{3} \gamma a_{1}+\frac {11}{120} \alpha ^{2} \gamma ^{2} a_{1}-\frac {1}{20} \alpha ^{2} \delta a_{1}-\frac {1}{20} \alpha ^{2} \epsilon a_{1}-\frac {1}{30} \alpha \,\epsilon ^{2} a_{0}+\frac {1}{20} \alpha \,\gamma ^{3} a_{1}-\frac {1}{15} \beta \,\gamma ^{2} a_{1}+\frac {1}{20} \beta \delta a_{1}+\frac {11}{120} \alpha ^{2} \gamma \epsilon a_{0}-\frac {1}{10} \alpha \beta \epsilon a_{0}-\frac {1}{10} \alpha \beta \gamma a_{1}-\frac {3}{40} \alpha \delta \epsilon a_{0}-\frac {7}{60} \alpha \delta \gamma a_{1}-\frac {3}{40} \alpha \epsilon \gamma a_{1}+\frac {1}{20} \alpha \,\gamma ^{2} \epsilon a_{0}-\frac {1}{15} \beta \gamma \epsilon a_{0}-\frac {1}{24} \delta \gamma \epsilon a_{0}+\frac {1}{40} \delta ^{2} a_{1}+\frac {1}{120} \epsilon ^{2} a_{1}+\frac {1}{120} \gamma ^{4} a_{1}\right ) x^{5}+\dots \] Collecting terms, the solution becomes \begin{equation} \tag{3} y = \left (1-\frac {\epsilon \,x^{2}}{2}+\left (\frac {1}{6} \alpha \epsilon +\frac {1}{6} \epsilon \gamma \right ) x^{3}+\left (-\frac {1}{12} \epsilon \,\alpha ^{2}-\frac {1}{8} \epsilon \gamma \alpha +\frac {1}{12} \beta \epsilon +\frac {1}{12} \delta \epsilon +\frac {1}{24} \epsilon ^{2}-\frac {1}{24} \epsilon \,\gamma ^{2}\right ) x^{4}+\left (-\frac {1}{60} \epsilon ^{2} \gamma +\frac {1}{120} \epsilon \,\gamma ^{3}+\frac {1}{20} \epsilon \,\alpha ^{3}-\frac {1}{30} \alpha \,\epsilon ^{2}+\frac {11}{120} \epsilon \gamma \,\alpha ^{2}-\frac {1}{10} \beta \alpha \epsilon -\frac {3}{40} \alpha \delta \epsilon +\frac {1}{20} \epsilon \,\gamma ^{2} \alpha -\frac {1}{15} \beta \epsilon \gamma -\frac {1}{24} \delta \epsilon \gamma \right ) x^{5}\right ) a_{0}+\left (x -\frac {x^{2} \gamma }{2}+\left (\frac {1}{6} \alpha \gamma +\frac {1}{6} \gamma ^{2}-\frac {1}{6} \delta -\frac {1}{6} \epsilon \right ) x^{3}+\left (-\frac {1}{12} \alpha ^{2} \gamma -\frac {1}{8} \alpha \,\gamma ^{2}+\frac {1}{12} \alpha \delta +\frac {1}{12} \alpha \epsilon +\frac {1}{12} \beta \gamma +\frac {1}{8} \delta \gamma +\frac {1}{12} \epsilon \gamma -\frac {1}{24} \gamma ^{3}\right ) x^{4}+\left (\frac {1}{20} \beta \epsilon -\frac {1}{20} \delta \,\gamma ^{2}+\frac {1}{30} \delta \epsilon -\frac {1}{40} \epsilon \,\gamma ^{2}+\frac {1}{20} \alpha ^{3} \gamma +\frac {11}{120} \alpha ^{2} \gamma ^{2}-\frac {1}{20} \alpha ^{2} \delta -\frac {1}{20} \epsilon \,\alpha ^{2}+\frac {1}{20} \alpha \,\gamma ^{3}-\frac {1}{15} \beta \,\gamma ^{2}+\frac {1}{20} \beta \delta -\frac {1}{10} \alpha \beta \gamma -\frac {7}{60} \alpha \delta \gamma -\frac {3}{40} \epsilon \gamma \alpha +\frac {1}{40} \delta ^{2}+\frac {1}{120} \epsilon ^{2}+\frac {1}{120} \gamma ^{4}\right ) x^{5}\right ) a_{1}+O\left (x^{6}\right ) \end{equation} At \(x = 0\) the solution above becomes \[ y = \left (1-\frac {\epsilon \,x^{2}}{2}+\left (\frac {1}{6} \alpha \epsilon +\frac {1}{6} \epsilon \gamma \right ) x^{3}+\left (-\frac {1}{12} \epsilon \,\alpha ^{2}-\frac {1}{8} \epsilon \gamma \alpha +\frac {1}{12} \beta \epsilon +\frac {1}{12} \delta \epsilon +\frac {1}{24} \epsilon ^{2}-\frac {1}{24} \epsilon \,\gamma ^{2}\right ) x^{4}+\left (-\frac {1}{60} \epsilon ^{2} \gamma +\frac {1}{120} \epsilon \,\gamma ^{3}+\frac {1}{20} \epsilon \,\alpha ^{3}-\frac {1}{30} \alpha \,\epsilon ^{2}+\frac {11}{120} \epsilon \gamma \,\alpha ^{2}-\frac {1}{10} \beta \alpha \epsilon -\frac {3}{40} \alpha \delta \epsilon +\frac {1}{20} \epsilon \,\gamma ^{2} \alpha -\frac {1}{15} \beta \epsilon \gamma -\frac {1}{24} \delta \epsilon \gamma \right ) x^{5}\right ) c_{1} +\left (x -\frac {x^{2} \gamma }{2}+\left (\frac {1}{6} \alpha \gamma +\frac {1}{6} \gamma ^{2}-\frac {1}{6} \delta -\frac {1}{6} \epsilon \right ) x^{3}+\left (-\frac {1}{12} \alpha ^{2} \gamma -\frac {1}{8} \alpha \,\gamma ^{2}+\frac {1}{12} \alpha \delta +\frac {1}{12} \alpha \epsilon +\frac {1}{12} \beta \gamma +\frac {1}{8} \delta \gamma +\frac {1}{12} \epsilon \gamma -\frac {1}{24} \gamma ^{3}\right ) x^{4}+\left (\frac {1}{20} \beta \epsilon -\frac {1}{20} \delta \,\gamma ^{2}+\frac {1}{30} \delta \epsilon -\frac {1}{40} \epsilon \,\gamma ^{2}+\frac {1}{20} \alpha ^{3} \gamma +\frac {11}{120} \alpha ^{2} \gamma ^{2}-\frac {1}{20} \alpha ^{2} \delta -\frac {1}{20} \epsilon \,\alpha ^{2}+\frac {1}{20} \alpha \,\gamma ^{3}-\frac {1}{15} \beta \,\gamma ^{2}+\frac {1}{20} \beta \delta -\frac {1}{10} \alpha \beta \gamma -\frac {7}{60} \alpha \delta \gamma -\frac {3}{40} \epsilon \gamma \alpha +\frac {1}{40} \delta ^{2}+\frac {1}{120} \epsilon ^{2}+\frac {1}{120} \gamma ^{4}\right ) x^{5}\right ) c_{2} +O\left (x^{6}\right ) \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \text {Expression too large to display} \\ \tag{2} y &= \left (1-\frac {\epsilon \,x^{2}}{2}+\left (\frac {1}{6} \alpha \epsilon +\frac {1}{6} \epsilon \gamma \right ) x^{3}+\left (-\frac {1}{12} \epsilon \,\alpha ^{2}-\frac {1}{8} \epsilon \gamma \alpha +\frac {1}{12} \beta \epsilon +\frac {1}{12} \delta \epsilon +\frac {1}{24} \epsilon ^{2}-\frac {1}{24} \epsilon \,\gamma ^{2}\right ) x^{4}+\left (-\frac {1}{60} \epsilon ^{2} \gamma +\frac {1}{120} \epsilon \,\gamma ^{3}+\frac {1}{20} \epsilon \,\alpha ^{3}-\frac {1}{30} \alpha \,\epsilon ^{2}+\frac {11}{120} \epsilon \gamma \,\alpha ^{2}-\frac {1}{10} \beta \alpha \epsilon -\frac {3}{40} \alpha \delta \epsilon +\frac {1}{20} \epsilon \,\gamma ^{2} \alpha -\frac {1}{15} \beta \epsilon \gamma -\frac {1}{24} \delta \epsilon \gamma \right ) x^{5}\right ) c_{1} +\left (x -\frac {x^{2} \gamma }{2}+\left (\frac {1}{6} \alpha \gamma +\frac {1}{6} \gamma ^{2}-\frac {1}{6} \delta -\frac {1}{6} \epsilon \right ) x^{3}+\left (-\frac {1}{12} \alpha ^{2} \gamma -\frac {1}{8} \alpha \,\gamma ^{2}+\frac {1}{12} \alpha \delta +\frac {1}{12} \alpha \epsilon +\frac {1}{12} \beta \gamma +\frac {1}{8} \delta \gamma +\frac {1}{12} \epsilon \gamma -\frac {1}{24} \gamma ^{3}\right ) x^{4}+\left (\frac {1}{20} \beta \epsilon -\frac {1}{20} \delta \,\gamma ^{2}+\frac {1}{30} \delta \epsilon -\frac {1}{40} \epsilon \,\gamma ^{2}+\frac {1}{20} \alpha ^{3} \gamma +\frac {11}{120} \alpha ^{2} \gamma ^{2}-\frac {1}{20} \alpha ^{2} \delta -\frac {1}{20} \epsilon \,\alpha ^{2}+\frac {1}{20} \alpha \,\gamma ^{3}-\frac {1}{15} \beta \,\gamma ^{2}+\frac {1}{20} \beta \delta -\frac {1}{10} \alpha \beta \gamma -\frac {7}{60} \alpha \delta \gamma -\frac {3}{40} \epsilon \gamma \alpha +\frac {1}{40} \delta ^{2}+\frac {1}{120} \epsilon ^{2}+\frac {1}{120} \gamma ^{4}\right ) x^{5}\right ) c_{2} +O\left (x^{6}\right ) \\ \end{align*}

Verification of solutions

\[ \text {Expression too large to display} \] Verified OK.

\[ y = \left (1-\frac {\epsilon \,x^{2}}{2}+\left (\frac {1}{6} \alpha \epsilon +\frac {1}{6} \epsilon \gamma \right ) x^{3}+\left (-\frac {1}{12} \epsilon \,\alpha ^{2}-\frac {1}{8} \epsilon \gamma \alpha +\frac {1}{12} \beta \epsilon +\frac {1}{12} \delta \epsilon +\frac {1}{24} \epsilon ^{2}-\frac {1}{24} \epsilon \,\gamma ^{2}\right ) x^{4}+\left (-\frac {1}{60} \epsilon ^{2} \gamma +\frac {1}{120} \epsilon \,\gamma ^{3}+\frac {1}{20} \epsilon \,\alpha ^{3}-\frac {1}{30} \alpha \,\epsilon ^{2}+\frac {11}{120} \epsilon \gamma \,\alpha ^{2}-\frac {1}{10} \beta \alpha \epsilon -\frac {3}{40} \alpha \delta \epsilon +\frac {1}{20} \epsilon \,\gamma ^{2} \alpha -\frac {1}{15} \beta \epsilon \gamma -\frac {1}{24} \delta \epsilon \gamma \right ) x^{5}\right ) c_{1} +\left (x -\frac {x^{2} \gamma }{2}+\left (\frac {1}{6} \alpha \gamma +\frac {1}{6} \gamma ^{2}-\frac {1}{6} \delta -\frac {1}{6} \epsilon \right ) x^{3}+\left (-\frac {1}{12} \alpha ^{2} \gamma -\frac {1}{8} \alpha \,\gamma ^{2}+\frac {1}{12} \alpha \delta +\frac {1}{12} \alpha \epsilon +\frac {1}{12} \beta \gamma +\frac {1}{8} \delta \gamma +\frac {1}{12} \epsilon \gamma -\frac {1}{24} \gamma ^{3}\right ) x^{4}+\left (\frac {1}{20} \beta \epsilon -\frac {1}{20} \delta \,\gamma ^{2}+\frac {1}{30} \delta \epsilon -\frac {1}{40} \epsilon \,\gamma ^{2}+\frac {1}{20} \alpha ^{3} \gamma +\frac {11}{120} \alpha ^{2} \gamma ^{2}-\frac {1}{20} \alpha ^{2} \delta -\frac {1}{20} \epsilon \,\alpha ^{2}+\frac {1}{20} \alpha \,\gamma ^{3}-\frac {1}{15} \beta \,\gamma ^{2}+\frac {1}{20} \beta \delta -\frac {1}{10} \alpha \beta \gamma -\frac {7}{60} \alpha \delta \gamma -\frac {3}{40} \epsilon \gamma \alpha +\frac {1}{40} \delta ^{2}+\frac {1}{120} \epsilon ^{2}+\frac {1}{120} \gamma ^{4}\right ) x^{5}\right ) c_{2} +O\left (x^{6}\right ) \] Verified OK.

13.26.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {\epsilon y}{\beta \,x^{2}+\alpha x +1}-\frac {\left (\delta x +\gamma \right ) y^{\prime }}{\beta \,x^{2}+\alpha x +1} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {\left (\delta x +\gamma \right ) y^{\prime }}{\beta \,x^{2}+\alpha x +1}+\frac {\epsilon y}{\beta \,x^{2}+\alpha x +1}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {\delta x +\gamma }{\beta \,x^{2}+\alpha x +1}, P_{3}\left (x \right )=\frac {\epsilon }{\beta \,x^{2}+\alpha x +1}\right ] \\ {} & \circ & \left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )\cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta } \\ {} & {} & \left (\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )\cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }}}}=0 \\ {} & \circ & {\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta } \\ {} & {} & \left ({\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }}}}=0 \\ {} & \circ & x =\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta } \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & \left (\beta \,x^{2}+\alpha x +1\right ) y^{\prime \prime }+\left (\delta x +\gamma \right ) y^{\prime }+\epsilon y=0 \\ \bullet & {} & \textrm {Change variables using}\hspace {3pt} x =u +\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\hspace {3pt}\textrm {so that the regular singular point is at}\hspace {3pt} u =0 \\ {} & {} & \left (\beta \,u^{2}+u \sqrt {\alpha ^{2}-4 \beta }\right ) \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )+\left (\delta u -\frac {\delta \alpha }{2 \beta }+\frac {\delta \sqrt {\alpha ^{2}-4 \beta }}{2 \beta }+\gamma \right ) \left (\frac {d}{d u}y \left (u \right )\right )+\epsilon y \left (u \right )=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (u \right ) \\ {} & {} & y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) u^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & u^{m}\cdot \left (\frac {d}{d u}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) u^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) u^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & u^{m}\cdot \left (\frac {d^{2}}{d u^{2}}y \left (u \right )\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) u^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & \frac {a_{0} r \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta r -2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma \right ) u^{-1+r}}{2 \beta }+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (\frac {a_{k +1} \left (k +1+r \right ) \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \left (k +1\right )+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta r -2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma \right )}{2 \beta }+a_{k} \left (\beta \,k^{2}+2 \beta k r +\beta \,r^{2}-\beta k -\beta r +\delta k +\delta r +\epsilon \right )\right ) u^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \frac {r \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta r -2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma \right )}{2 \beta }=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \frac {2 a_{k +1} \left (k +1+r \right ) \left (\left (k +r \right ) \beta +\frac {\delta }{2}\right ) \sqrt {\alpha ^{2}-4 \beta }+2 a_{k} \left (k +r \right ) \left (k +r -1\right ) \beta ^{2}+\left (2 \gamma \left (k +1+r \right ) a_{k +1}+2 a_{k} \left (\delta k +\delta r +\epsilon \right )\right ) \beta -a_{k +1} \alpha \delta \left (k +1+r \right )}{2 \beta }=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}+2 \beta k r +\beta \,r^{2}-\beta k -\beta r +\delta k +\delta r +\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+4 \sqrt {\alpha ^{2}-4 \beta }\, \beta k r +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,r^{2}+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta r +\sqrt {\alpha ^{2}-4 \beta }\, \delta k +\sqrt {\alpha ^{2}-4 \beta }\, \delta r -\alpha \delta k -\alpha \delta r +2 \beta \gamma k +2 \beta \gamma r +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma } \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}-\beta k +\delta k +\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +\sqrt {\alpha ^{2}-4 \beta }\, \delta k -\alpha \delta k +2 \beta \gamma k +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma } \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k}, a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}-\beta k +\delta k +\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +\sqrt {\alpha ^{2}-4 \beta }\, \delta k -\alpha \delta k +2 \beta \gamma k +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma }\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta } \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} {\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{k}, a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}-\beta k +\delta k +\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +\sqrt {\alpha ^{2}-4 \beta }\, \delta k -\alpha \delta k +2 \beta \gamma k +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma }\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta } \\ {} & {} & a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}+\frac {k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{4 \beta \left (\alpha ^{2}-4 \beta \right )}-\beta k -\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }}+\delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \beta }-\alpha \delta k -\frac {\alpha \delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \beta \gamma k +\frac {\gamma \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta } \\ {} & {} & \left [y \left (u \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} u^{k +\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }}, a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}+\frac {k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{4 \beta \left (\alpha ^{2}-4 \beta \right )}-\beta k -\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }}+\delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \beta }-\alpha \delta k -\frac {\alpha \delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \beta \gamma k +\frac {\gamma \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}}\right ] \\ \bullet & {} & \textrm {Revert the change of variables}\hspace {3pt} u =x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta } \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} {\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{k +\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }}, a_{k +1}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}+\frac {k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{4 \beta \left (\alpha ^{2}-4 \beta \right )}-\beta k -\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }}+\delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \beta }-\alpha \delta k -\frac {\alpha \delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \beta \gamma k +\frac {\gamma \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} {\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} {\left (x -\frac {-\alpha +\sqrt {\alpha ^{2}-4 \beta }}{2 \beta }\right )}^{k +\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }}\right ), a_{1+k}=-\frac {2 \beta a_{k} \left (\beta \,k^{2}-\beta k +\delta k +\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +\sqrt {\alpha ^{2}-4 \beta }\, \delta k -\alpha \delta k +2 \beta \gamma k +\sqrt {\alpha ^{2}-4 \beta }\, \delta -\alpha \delta +2 \beta \gamma }, b_{1+k}=-\frac {2 \beta b_{k} \left (\beta \,k^{2}+\frac {k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{4 \beta \left (\alpha ^{2}-4 \beta \right )}-\beta k -\frac {2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma }{2 \sqrt {\alpha ^{2}-4 \beta }}+\delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+\epsilon \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta \,k^{2}+2 k \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )+\frac {\left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )^{2}}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \sqrt {\alpha ^{2}-4 \beta }\, \beta k +2 \sqrt {\alpha ^{2}-4 \beta }\, \beta +\sqrt {\alpha ^{2}-4 \beta }\, \delta k +\frac {\delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \beta }-\alpha \delta k -\frac {\alpha \delta \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{2 \sqrt {\alpha ^{2}-4 \beta }\, \beta }+2 \beta \gamma k +\frac {\gamma \left (2 \sqrt {\alpha ^{2}-4 \beta }\, \beta -\sqrt {\alpha ^{2}-4 \beta }\, \delta +\alpha \delta -2 \beta \gamma \right )}{\sqrt {\alpha ^{2}-4 \beta }}}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      <- heuristic approach successful 
   <- hypergeometric successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 366

Order:=6; 
dsolve((1+alpha*x+beta*x^2)*diff(y(x),x$2)+(gamma+delta*x)*diff(y(x),x)+epsilon*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \left (1-\frac {\epsilon \,x^{2}}{2}+\frac {\epsilon \left (\alpha +\gamma \right ) x^{3}}{6}+\frac {\epsilon \left (-\alpha ^{2}-\frac {3}{2} \alpha \gamma -\frac {1}{2} \gamma ^{2}+\beta +\delta +\frac {1}{2} \epsilon \right ) x^{4}}{12}-\frac {\epsilon \left (\frac {\left (\alpha +\frac {\gamma }{2}\right ) \epsilon }{3}-\frac {\gamma ^{3}}{12}-\frac {\alpha \,\gamma ^{2}}{2}+\frac {\left (-\frac {11 \alpha ^{2}}{4}+2 \beta +\frac {5 \delta }{4}\right ) \gamma }{3}+\alpha \left (-\frac {\alpha ^{2}}{2}+\beta +\frac {3 \delta }{4}\right )\right ) x^{5}}{10}\right ) y \left (0\right )+\left (x -\frac {\gamma \,x^{2}}{2}+\frac {\left (\alpha \gamma +\gamma ^{2}-\delta -\epsilon \right ) x^{3}}{6}+\frac {\left (\left (2 \alpha +2 \gamma \right ) \epsilon -\gamma ^{3}-3 \alpha \,\gamma ^{2}+\left (-2 \alpha ^{2}+2 \beta +3 \delta \right ) \gamma +2 \delta \alpha \right ) x^{4}}{24}+\frac {\left (\epsilon ^{2}+\left (-6 \alpha ^{2}-9 \alpha \gamma -3 \gamma ^{2}+6 \beta +4 \delta \right ) \epsilon +\gamma ^{4}+6 \alpha \,\gamma ^{3}+\left (11 \alpha ^{2}-8 \beta -6 \delta \right ) \gamma ^{2}-12 \alpha \left (-\frac {\alpha ^{2}}{2}+\beta +\frac {7 \delta }{6}\right ) \gamma +6 \left (-\alpha ^{2}+\beta +\frac {\delta }{2}\right ) \delta \right ) x^{5}}{120}\right ) D\left (y \right )\left (0\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 561

AsymptoticDSolveValue[(1+\[Alpha]*x+\[Beta]*x^2)*y''[x]+(\[Gamma]+\[Delta]*x)*y'[x]+\[Epsilon]*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (-\frac {1}{20} x^5 \epsilon \left (2 \alpha \beta -\alpha ^3\right )-\frac {1}{20} x^5 \epsilon \left (\alpha \delta -\gamma \left (\alpha ^2-\beta \right )\right )+\frac {1}{60} \gamma x^5 \epsilon \left (\alpha ^2-\beta \right )+\frac {1}{120} \alpha \gamma ^2 x^5 \epsilon +\frac {1}{40} \alpha x^5 \epsilon (\alpha \gamma -\delta )+\frac {1}{24} \gamma x^5 \epsilon (\alpha \gamma -\delta )-\frac {1}{30} \alpha x^5 \epsilon ^2+\frac {1}{120} \gamma ^3 x^5 \epsilon -\frac {1}{60} \gamma x^5 \epsilon ^2-\frac {1}{12} x^4 \epsilon \left (\alpha ^2-\beta \right )-\frac {1}{12} x^4 \epsilon (\alpha \gamma -\delta )-\frac {1}{24} \alpha \gamma x^4 \epsilon -\frac {1}{24} \gamma ^2 x^4 \epsilon +\frac {x^4 \epsilon ^2}{24}+\frac {1}{6} \alpha x^3 \epsilon +\frac {1}{6} \gamma x^3 \epsilon -\frac {x^2 \epsilon }{2}+1\right )+c_2 \left (\frac {1}{60} \gamma x^5 \left (\gamma \left (\alpha ^2-\beta \right )-\alpha \delta \right )-\frac {1}{20} \gamma x^5 \left (\alpha \delta -\gamma \left (\alpha ^2-\beta \right )\right )-\frac {1}{20} x^5 \epsilon \left (\alpha ^2-\beta \right )-\frac {1}{20} x^5 \left (\alpha ^3 (-\gamma )+\alpha ^2 \delta +2 \alpha \beta \gamma -\beta \delta \right )+\frac {1}{24} \gamma ^2 x^5 (\alpha \gamma -\delta )-\frac {1}{120} \gamma ^2 x^5 (\delta -\alpha \gamma )-\frac {1}{40} x^5 \epsilon (\alpha \gamma -\delta )+\frac {1}{120} x^5 \epsilon (\delta -\alpha \gamma )-\frac {1}{40} x^5 (\alpha \gamma -\delta ) (\delta -\alpha \gamma )-\frac {1}{24} \alpha \gamma x^5 \epsilon +\frac {\gamma ^4 x^5}{120}-\frac {1}{40} \gamma ^2 x^5 \epsilon +\frac {x^5 \epsilon ^2}{120}-\frac {1}{12} x^4 \left (\gamma \left (\alpha ^2-\beta \right )-\alpha \delta \right )-\frac {1}{12} \gamma x^4 (\alpha \gamma -\delta )+\frac {1}{24} \gamma x^4 (\delta -\alpha \gamma )+\frac {1}{12} \alpha x^4 \epsilon -\frac {\gamma ^3 x^4}{24}+\frac {1}{12} \gamma x^4 \epsilon -\frac {1}{6} x^3 (\delta -\alpha \gamma )+\frac {\gamma ^2 x^3}{6}-\frac {x^3 \epsilon }{6}-\frac {\gamma x^2}{2}+x\right ) \]