14.48 problem 50

14.48.1 Maple step by step solution

Internal problem ID [1339]
Internal file name [OUTPUT/1340_Sunday_June_05_2022_02_11_55_AM_4748891/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number: 50.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (4 x^{4}+4 x^{2}\right ) y^{\prime \prime }+\left (24 x^{3}+4 x \right ) y^{\prime }+\left (25 x^{2}-1\right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {6 x^{2}+1}{x \left (x^{2}+1\right )}\\ q(x) &= \frac {25 x^{2}-1}{4 x^{2} \left (x^{2}+1\right )}\\ \end {align*}

Table 324: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {6 x^{2}+1}{x \left (x^{2}+1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -i\) \(\text {``regular''}\)
\(x = i\) \(\text {``regular''}\)
\(q(x)=\frac {25 x^{2}-1}{4 x^{2} \left (x^{2}+1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -i\) \(\text {``regular''}\)
\(x = i\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, -i, i, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+\left (24 x^{3}+4 x \right ) y^{\prime }+\left (25 x^{2}-1\right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 4 x^{2} \left (x^{2}+1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (24 x^{3}+4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (25 x^{2}-1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}24 x^{n +r +2} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}25 x^{n +r +2} a_{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right ) \left (n +r -1\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}24 x^{n +r +2} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}24 a_{n -2} \left (n +r -2\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}25 x^{n +r +2} a_{n} &= \moverset {\infty }{\munderset {n =2}{\sum }}25 a_{n -2} x^{n +r} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}24 a_{n -2} \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}25 a_{n -2} x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+4 x^{n +r} a_{n} \left (n +r \right )-a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 4 x^{r} a_{0} r \left (-1+r \right )+4 x^{r} a_{0} r -a_{0} x^{r} = 0 \] Or \[ \left (4 x^{r} r \left (-1+r \right )+4 x^{r} r -x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (4 r^{2}-1\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 4 r^{2}-1 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {1}{2}}\\ r_2 &= -{\frac {1}{2}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (4 r^{2}-1\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {1}{2}}, -{\frac {1}{2}}\right ]\).

Since \(r_1 - r_2 = 1\) is an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \sqrt {x}\, \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\frac {\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}}{\sqrt {x}} \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{2}}\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -\frac {1}{2}}\right ) \end {align*}

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). Substituting \(n = 1\) in Eq. (2B) gives \[ a_{1} = 0 \] For \(2\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right )+4 a_{n} \left (n +r \right ) \left (n +r -1\right )+24 a_{n -2} \left (n +r -2\right )+4 a_{n} \left (n +r \right )+25 a_{n -2}-a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {\left (1+2 n +2 r \right ) a_{n -2}}{2 n +2 r -1}\tag {4} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{n} = -\frac {\left (1+n \right ) a_{n -2}}{n}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {-5-2 r}{3+2 r} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{2}=-{\frac {3}{2}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-{\frac {3}{2}}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-{\frac {3}{2}}\)
\(a_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {4 r^{2}+28 r +45}{4 r^{2}+20 r +21} \] Which for the root \(r = {\frac {1}{2}}\) becomes \[ a_{4}={\frac {15}{8}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-{\frac {3}{2}}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {4 r^{2}+28 r +45}{4 r^{2}+20 r +21}\) \(\frac {15}{8}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-{\frac {3}{2}}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {4 r^{2}+28 r +45}{4 r^{2}+20 r +21}\) \(\frac {15}{8}\)
\(a_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= \sqrt {x} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= \sqrt {x}\, \left (1-\frac {3 x^{2}}{2}+\frac {15 x^{4}}{8}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Let \[ r_{1}-r_{2} = N \] Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r\rightarrow r_{2}}a_{1}\left (r \right )\). If this limit exists, then \(C = 0\), else we need to keep the log term and \(C \neq 0\). The above table shows that \begin {align*} a_N &= a_{1} \\ &= 0 \end {align*}

Therefore \begin {align*} \lim _{r\rightarrow r_{2}}0&= \lim _{r\rightarrow -{\frac {1}{2}}}0\\ &= 0 \end {align*}

The limit is \(0\). Since the limit exists then the log term is not needed and we can set \(C = 0\). Therefore the second solution has the form \begin {align*} y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r}\\ &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -\frac {1}{2}} \end {align*}

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). Substituting \(n = 1\) in Eq(3) gives \[ b_{1} = 0 \] For \(2\le n\) the recursive equation is \begin{equation} \tag{4} 4 b_{n -2} \left (n +r -2\right ) \left (n -3+r \right )+4 b_{n} \left (n +r \right ) \left (n +r -1\right )+24 b_{n -2} \left (n +r -2\right )+4 b_{n} \left (n +r \right )+25 b_{n -2}-b_{n} = 0 \end{equation} Which for for the root \(r = -{\frac {1}{2}}\) becomes \begin{equation} \tag{4A} 4 b_{n -2} \left (n -\frac {5}{2}\right ) \left (n -\frac {7}{2}\right )+4 b_{n} \left (n -\frac {1}{2}\right ) \left (n -\frac {3}{2}\right )+24 b_{n -2} \left (n -\frac {5}{2}\right )+4 b_{n} \left (n -\frac {1}{2}\right )+25 b_{n -2}-b_{n} = 0 \end{equation} Solving for \(b_{n}\) from the recursive equation (4) gives \[ b_{n} = -\frac {\left (1+2 n +2 r \right ) b_{n -2}}{2 n +2 r -1}\tag {5} \] Which for the root \(r = -{\frac {1}{2}}\) becomes \[ b_{n} = -\frac {2 n b_{n -2}}{2 n -2}\tag {6} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = -{\frac {1}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=-\frac {5+2 r}{3+2 r} \] Which for the root \(r = -{\frac {1}{2}}\) becomes \[ b_{2}=-2 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-2\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-2\)
\(b_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {4 r^{2}+28 r +45}{\left (3+2 r \right ) \left (7+2 r \right )} \] Which for the root \(r = -{\frac {1}{2}}\) becomes \[ b_{4}={\frac {8}{3}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-2\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {4 r^{2}+28 r +45}{4 r^{2}+20 r +21}\) \(\frac {8}{3}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {-5-2 r}{3+2 r}\) \(-2\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {4 r^{2}+28 r +45}{4 r^{2}+20 r +21}\) \(\frac {8}{3}\)
\(b_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= \sqrt {x} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= \frac {1-2 x^{2}+\frac {8 x^{4}}{3}+O\left (x^{6}\right )}{\sqrt {x}} \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} \sqrt {x}\, \left (1-\frac {3 x^{2}}{2}+\frac {15 x^{4}}{8}+O\left (x^{6}\right )\right ) + \frac {c_{2} \left (1-2 x^{2}+\frac {8 x^{4}}{3}+O\left (x^{6}\right )\right )}{\sqrt {x}} \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} \sqrt {x}\, \left (1-\frac {3 x^{2}}{2}+\frac {15 x^{4}}{8}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1-2 x^{2}+\frac {8 x^{4}}{3}+O\left (x^{6}\right )\right )}{\sqrt {x}} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \sqrt {x}\, \left (1-\frac {3 x^{2}}{2}+\frac {15 x^{4}}{8}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1-2 x^{2}+\frac {8 x^{4}}{3}+O\left (x^{6}\right )\right )}{\sqrt {x}} \\ \end{align*}

Verification of solutions

\[ y = c_{1} \sqrt {x}\, \left (1-\frac {3 x^{2}}{2}+\frac {15 x^{4}}{8}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1-2 x^{2}+\frac {8 x^{4}}{3}+O\left (x^{6}\right )\right )}{\sqrt {x}} \] Verified OK.

14.48.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x^{2}+1\right ) \left (\frac {d}{d x}y^{\prime }\right )+\left (24 x^{3}+4 x \right ) y^{\prime }+\left (25 x^{2}-1\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\left (25 x^{2}-1\right ) y}{4 x^{2} \left (x^{2}+1\right )}-\frac {\left (6 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {\left (6 x^{2}+1\right ) y^{\prime }}{x \left (x^{2}+1\right )}+\frac {\left (25 x^{2}-1\right ) y}{4 x^{2} \left (x^{2}+1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {6 x^{2}+1}{x \left (x^{2}+1\right )}, P_{3}\left (x \right )=\frac {25 x^{2}-1}{4 x^{2} \left (x^{2}+1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-\frac {1}{4} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x^{2}+1\right ) \left (\frac {d}{d x}y^{\prime }\right )+4 x \left (6 x^{2}+1\right ) y^{\prime }+\left (25 x^{2}-1\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..4 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (1+2 r \right ) \left (-1+2 r \right ) x^{r}+a_{1} \left (3+2 r \right ) \left (1+2 r \right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (2 k +2 r +1\right ) \left (2 k +2 r -1\right )+a_{k -2} \left (2 k +2 r +1\right )^{2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (1+2 r \right ) \left (-1+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-\frac {1}{2}, \frac {1}{2}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (3+2 r \right ) \left (1+2 r \right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 4 \left (\left (k +r +\frac {1}{2}\right ) a_{k -2}+a_{k} \left (k +r -\frac {1}{2}\right )\right ) \left (k +r +\frac {1}{2}\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & 4 \left (\left (k +\frac {5}{2}+r \right ) a_{k}+a_{k +2} \left (k +\frac {3}{2}+r \right )\right ) \left (k +\frac {5}{2}+r \right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {\left (2 k +2 r +5\right ) a_{k}}{2 k +3+2 r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\frac {1}{2} \\ {} & {} & a_{k +2}=-\frac {\left (2 k +4\right ) a_{k}}{2 k +2} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\frac {1}{2}}, a_{k +2}=-\frac {\left (2 k +4\right ) a_{k}}{2 k +2}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & a_{k +2}=-\frac {\left (2 k +6\right ) a_{k}}{2 k +4} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{2}}, a_{k +2}=-\frac {\left (2 k +6\right ) a_{k}}{2 k +4}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\frac {1}{2}}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {1}{2}}\right ), a_{k +2}=-\frac {\left (2 k +4\right ) a_{k}}{2 k +2}, a_{1}=0, b_{k +2}=-\frac {\left (2 k +6\right ) b_{k}}{2 k +4}, b_{1}=0\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; 
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+4*x*(1+6*x^2)*diff(y(x),x)-(1-25*x^2)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \frac {c_{1} x \left (1-\frac {3}{2} x^{2}+\frac {15}{8} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-2 x^{2}+\frac {8}{3} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{\sqrt {x}} \]

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 56

AsymptoticDSolveValue[4*x^2*(1+x^2)*y''[x]+4*x*(1+6*x^2)*y'[x]-(1-25*x^2)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (\frac {8 x^{7/2}}{3}-2 x^{3/2}+\frac {1}{\sqrt {x}}\right )+c_2 \left (\frac {15 x^{9/2}}{8}-\frac {3 x^{5/2}}{2}+\sqrt {x}\right ) \]