14.52 problem 63

14.52.1 Maple step by step solution

Internal problem ID [1343]
Internal file name [OUTPUT/1344_Sunday_June_05_2022_02_12_05_AM_33849928/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.5 THE METHOD OF FROBENIUS I. Exercises 7.5. Page 358
Problem number: 63.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {28 x^{2} \left (-3 x +1\right ) y^{\prime \prime }-7 x \left (5+9 x \right ) y^{\prime }+7 \left (2+9 x \right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (-84 x^{3}+28 x^{2}\right ) y^{\prime \prime }+\left (-63 x^{2}-35 x \right ) y^{\prime }+\left (63 x +14\right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {5+9 x}{4 x \left (3 x -1\right )}\\ q(x) &= -\frac {2+9 x}{4 x^{2} \left (3 x -1\right )}\\ \end {align*}

Table 328: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {5+9 x}{4 x \left (3 x -1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = {\frac {1}{3}}\) \(\text {``regular''}\)
\(q(x)=-\frac {2+9 x}{4 x^{2} \left (3 x -1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = {\frac {1}{3}}\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \(\left [0, {\frac {1}{3}}, \infty \right ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ -28 y^{\prime \prime } x^{2} \left (3 x -1\right )+\left (-63 x^{2}-35 x \right ) y^{\prime }+\left (63 x +14\right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} -28 \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right ) x^{2} \left (3 x -1\right )+\left (-63 x^{2}-35 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (63 x +14\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-84 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}28 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-63 x^{1+n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-35 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}63 x^{1+n +r} a_{n}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}14 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-84 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-84 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-63 x^{1+n +r} a_{n} \left (n +r \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-63 a_{n -1} \left (n +r -1\right ) x^{n +r}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}63 x^{1+n +r} a_{n} &= \moverset {\infty }{\munderset {n =1}{\sum }}63 a_{n -1} x^{n +r} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \moverset {\infty }{\munderset {n =1}{\sum }}\left (-84 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}28 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-63 a_{n -1} \left (n +r -1\right ) x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-35 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}63 a_{n -1} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}14 a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 28 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )-35 x^{n +r} a_{n} \left (n +r \right )+14 a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 28 x^{r} a_{0} r \left (-1+r \right )-35 x^{r} a_{0} r +14 a_{0} x^{r} = 0 \] Or \[ \left (28 x^{r} r \left (-1+r \right )-35 x^{r} r +14 x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (28 r^{2}-63 r +14\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 28 r^{2}-63 r +14 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= 2\\ r_2 &= {\frac {1}{4}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (28 r^{2}-63 r +14\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [2, {\frac {1}{4}}\right ]\).

Since \(r_1 - r_2 = {\frac {7}{4}}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +2}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +\frac {1}{4}} \end {align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} -84 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+28 a_{n} \left (n +r \right ) \left (n +r -1\right )-63 a_{n -1} \left (n +r -1\right )-35 a_{n} \left (n +r \right )+63 a_{n -1}+14 a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = 3 a_{n -1}\tag {4} \] Which for the root \(r = 2\) becomes \[ a_{n} = 3 a_{n -1}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 2\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=3 \] Which for the root \(r = 2\) becomes \[ a_{1}=3 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(3\) \(3\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=9 \] Which for the root \(r = 2\) becomes \[ a_{2}=9 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(3\) \(3\)
\(a_{2}\) \(9\) \(9\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=27 \] Which for the root \(r = 2\) becomes \[ a_{3}=27 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(3\) \(3\)
\(a_{2}\) \(9\) \(9\)
\(a_{3}\) \(27\) \(27\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=81 \] Which for the root \(r = 2\) becomes \[ a_{4}=81 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(3\) \(3\)
\(a_{2}\) \(9\) \(9\)
\(a_{3}\) \(27\) \(27\)
\(a_{4}\) \(81\) \(81\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=243 \] Which for the root \(r = 2\) becomes \[ a_{5}=243 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(3\) \(3\)
\(a_{2}\) \(9\) \(9\)
\(a_{3}\) \(27\) \(27\)
\(a_{4}\) \(81\) \(81\)
\(a_{5}\) \(243\) \(243\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{2} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{2} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} -84 b_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+28 b_{n} \left (n +r \right ) \left (n +r -1\right )-63 b_{n -1} \left (n +r -1\right )-35 b_{n} \left (n +r \right )+63 b_{n -1}+14 b_{n} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = 3 b_{n -1}\tag {4} \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{n} = 3 b_{n -1}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = {\frac {1}{4}}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=3 \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{1}=3 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(3\) \(3\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=9 \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{2}=9 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(3\) \(3\)
\(b_{2}\) \(9\) \(9\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=27 \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{3}=27 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(3\) \(3\)
\(b_{2}\) \(9\) \(9\)
\(b_{3}\) \(27\) \(27\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=81 \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{4}=81 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(3\) \(3\)
\(b_{2}\) \(9\) \(9\)
\(b_{3}\) \(27\) \(27\)
\(b_{4}\) \(81\) \(81\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=243 \] Which for the root \(r = {\frac {1}{4}}\) becomes \[ b_{5}=243 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(3\) \(3\)
\(b_{2}\) \(9\) \(9\)
\(b_{3}\) \(27\) \(27\)
\(b_{4}\) \(81\) \(81\)
\(b_{5}\) \(243\) \(243\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= x^{2} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= x^{\frac {1}{4}} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{2} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) + c_{2} x^{\frac {1}{4}} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{2} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{2} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{2} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right )+c_{2} x^{\frac {1}{4}} \left (1+3 x +9 x^{2}+27 x^{3}+81 x^{4}+243 x^{5}+O\left (x^{6}\right )\right ) \] Verified OK.

14.52.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & -28 y^{\prime \prime } x^{2} \left (3 x -1\right )+\left (-63 x^{2}-35 x \right ) y^{\prime }+\left (63 x +14\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\left (2+9 x \right ) y}{4 x^{2} \left (3 x -1\right )}-\frac {\left (5+9 x \right ) y^{\prime }}{4 x \left (3 x -1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {\left (5+9 x \right ) y^{\prime }}{4 x \left (3 x -1\right )}-\frac {\left (2+9 x \right ) y}{4 x^{2} \left (3 x -1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {5+9 x}{4 x \left (3 x -1\right )}, P_{3}\left (x \right )=-\frac {2+9 x}{4 x^{2} \left (3 x -1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-\frac {5}{4} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{2} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 y^{\prime \prime } x^{2} \left (3 x -1\right )+x \left (5+9 x \right ) y^{\prime }+\left (-9 x -2\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..3 \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} \left (-1+4 r \right ) \left (-2+r \right ) x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (-a_{k} \left (4 k +4 r -1\right ) \left (k +r -2\right )+3 a_{k -1} \left (4 k +4 r -1\right ) \left (k +r -2\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -\left (-1+4 r \right ) \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{2, \frac {1}{4}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -4 \left (k +r -2\right ) \left (k +r -\frac {1}{4}\right ) \left (a_{k}-3 a_{k -1}\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & -4 \left (k +r -1\right ) \left (k +\frac {3}{4}+r \right ) \left (a_{k +1}-3 a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=3 a_{k} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =2 \\ {} & {} & a_{k +1}=3 a_{k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =2 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2}, a_{k +1}=3 a_{k}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{4} \\ {} & {} & a_{k +1}=3 a_{k} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{4} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{4}}, a_{k +1}=3 a_{k}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {1}{4}}\right ), a_{1+k}=3 a_{k}, b_{1+k}=3 b_{k}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Reducible group (found another exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.063 (sec). Leaf size: 47

Order:=6; 
dsolve(28*x^2*(1-3*x)*diff(y(x),x$2)-7*x*(5+9*x)*diff(y(x),x)+7*(2+9*x)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \left (243 x^{5}+81 x^{4}+27 x^{3}+9 x^{2}+3 x +1\right ) \left (c_{1} x^{\frac {1}{4}}+c_{2} x^{2}\right )+O\left (x^{6}\right ) \]

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 68

AsymptoticDSolveValue[28*x^2*(1-3*x)*y''[x]-7*x*(5+9*x)*y'[x]+7*(2+9*x)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (243 x^5+81 x^4+27 x^3+9 x^2+3 x+1\right ) x^2+c_2 \left (243 x^5+81 x^4+27 x^3+9 x^2+3 x+1\right ) \sqrt [4]{x} \]