15.22 problem 18

15.22.1 Maple step by step solution

Internal problem ID [1370]
Internal file name [OUTPUT/1371_Sunday_June_05_2022_02_13_37_AM_28562163/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS II. Exercises 7.6. Page 374
Problem number: 18.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x^{2} \left (9+4 x \right ) y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (4 x^{3}+9 x^{2}\right ) y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {3}{x \left (9+4 x \right )}\\ q(x) &= \frac {1+x}{x^{2} \left (9+4 x \right )}\\ \end {align*}

Table 355: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {3}{x \left (9+4 x \right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -{\frac {9}{4}}\) \(\text {``regular''}\)
\(q(x)=\frac {1+x}{x^{2} \left (9+4 x \right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -{\frac {9}{4}}\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \(\left [0, -{\frac {9}{4}}, \infty \right ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ x^{2} \left (9+4 x \right ) y^{\prime \prime }+3 x y^{\prime }+\left (1+x \right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} x^{2} \left (9+4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+3 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (1+x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}9 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}3 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{1+n +r} a_{n}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}4 x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}x^{1+n +r} a_{n} &= \moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} x^{n +r} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =1}{\sum }}4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}9 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}3 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 9 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+3 x^{n +r} a_{n} \left (n +r \right )+a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 9 x^{r} a_{0} r \left (-1+r \right )+3 x^{r} a_{0} r +a_{0} x^{r} = 0 \] Or \[ \left (9 x^{r} r \left (-1+r \right )+3 x^{r} r +x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ x^{r} \left (3 r -1\right )^{2} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ \left (3 r -1\right )^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {1}{3}}\\ r_2 &= {\frac {1}{3}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ x^{r} \left (3 r -1\right )^{2} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {1}{3}}, {\frac {1}{3}}\right ]\).

Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\tag {1A} \end {align*}

Now the second solution \(y_{2}\) is found using \begin {align*} y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right )\tag {1B} \end {align*}

Then the general solution will be \[ y = c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \] In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), \(a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0} = 1\), and \(\{c_{1}, c_{2}\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r = {\frac {1}{3}}\), Eqs (1A,1B) become \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {1}{3}}\\ y_{2}\left (x \right ) &= y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +\frac {1}{3}}\right ) \end {align*}

We start by finding the first solution \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+9 a_{n} \left (n +r \right ) \left (n +r -1\right )+3 a_{n} \left (n +r \right )+a_{n}+a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {a_{n -1} \left (4 n^{2}+8 n r +4 r^{2}-12 n -12 r +9\right )}{9 n^{2}+18 n r +9 r^{2}-6 n -6 r +1}\tag {4} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{n} = -\frac {\left (6 n -7\right )^{2} a_{n -1}}{81 n^{2}}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {1}{3}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{1}=-{\frac {1}{81}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{2}={\frac {25}{26244}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\)
\(a_{2}\) \(\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {25}{26244}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=-\frac {64 \left (-\frac {1}{2}+r \right )^{2} \left (\frac {3}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+48 r +64\right )} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{3}=-{\frac {3025}{19131876}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\)
\(a_{2}\) \(\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {25}{26244}\)
\(a_{3}\) \(-\frac {64 \left (-\frac {1}{2}+r \right )^{2} \left (\frac {3}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+48 r +64\right )}\) \(-{\frac {3025}{19131876}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {\left (2 r +1\right )^{2} \left (3+2 r \right )^{2} \left (2 r -1\right )^{2} \left (4 r^{2}+20 r +25\right )}{6561 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {8}{3}\right )^{2} \left (r +\frac {11}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{4}={\frac {874225}{24794911296}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\)
\(a_{2}\) \(\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {25}{26244}\)
\(a_{3}\) \(-\frac {64 \left (-\frac {1}{2}+r \right )^{2} \left (\frac {3}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+48 r +64\right )}\) \(-{\frac {3025}{19131876}}\)
\(a_{4}\) \(\frac {\left (2 r +1\right )^{2} \left (3+2 r \right )^{2} \left (2 r -1\right )^{2} \left (4 r^{2}+20 r +25\right )}{6561 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {8}{3}\right )^{2} \left (r +\frac {11}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {874225}{24794911296}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=-\frac {\left (2 r -1\right )^{2} \left (3+2 r \right )^{2} \left (2 r +1\right )^{2} \left (7+2 r \right )^{2} \left (5+2 r \right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +8\right )^{2} \left (3 r +11\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+84 r +196\right )} \] Which for the root \(r = {\frac {1}{3}}\) becomes \[ a_{5}=-{\frac {18498601}{2008387814976}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\)
\(a_{2}\) \(\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {25}{26244}\)
\(a_{3}\) \(-\frac {64 \left (-\frac {1}{2}+r \right )^{2} \left (\frac {3}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+48 r +64\right )}\) \(-{\frac {3025}{19131876}}\)
\(a_{4}\) \(\frac {\left (2 r +1\right )^{2} \left (3+2 r \right )^{2} \left (2 r -1\right )^{2} \left (4 r^{2}+20 r +25\right )}{6561 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {8}{3}\right )^{2} \left (r +\frac {11}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {874225}{24794911296}\)
\(a_{5}\) \(-\frac {\left (2 r -1\right )^{2} \left (3+2 r \right )^{2} \left (2 r +1\right )^{2} \left (7+2 r \right )^{2} \left (5+2 r \right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +8\right )^{2} \left (3 r +11\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+84 r +196\right )}\) \(-{\frac {18498601}{2008387814976}}\)

Using the above table, then the first solution \(y_{1}\left (x \right )\) is \begin{align*} y_{1}\left (x \right )&= x^{\frac {1}{3}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \\ \end{align*} Now the second solution is found. The second solution is given by \[ y_{2}\left (x \right ) = y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}b_{n} x^{n +r}\right ) \] Where \(b_{n}\) is found using \[ b_{n} = \frac {d}{d r}a_{n ,r} \] And the above is then evaluated at \(r = {\frac {1}{3}}\). The above table for \(a_{n ,r}\) is used for this purpose. Computing the derivatives gives the following table

\(n\) \(b_{n ,r}\) \(a_{n}\) \(b_{n ,r} = \frac {d}{d r}a_{n ,r}\) \(b_{n}\left (r =\frac {1}{3}\right )\)
\(b_{0}\) \(1\) \(1\) N/A since \(b_{n}\) starts from 1 N/A
\(b_{1}\) \(-\frac {\left (2 r -1\right )^{2}}{\left (3 r +2\right )^{2}}\) \(-{\frac {1}{81}}\) \(\frac {-28 r +14}{\left (3 r +2\right )^{3}}\) \(\frac {14}{81}\)
\(b_{2}\) \(\frac {16 \left (-\frac {1}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{81 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {25}{26244}\) \(\frac {672 r^{4}+784 r^{3}-196 r -42}{\left (3 r +5\right )^{3} \left (3 r +2\right )^{3}}\) \(-{\frac {35}{2916}}\)
\(b_{3}\) \(-\frac {64 \left (-\frac {1}{2}+r \right )^{2} \left (\frac {3}{2}+r \right )^{2} \left (r +\frac {1}{2}\right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+48 r +64\right )}\) \(-{\frac {3025}{19131876}}\) \(-\frac {14 \left (108 r^{4}+468 r^{3}+687 r^{2}+390 r +62\right ) \left (3+2 r \right ) \left (4 r^{2}-1\right )}{\left (3 r +2\right )^{3} \left (3 r +8\right )^{3} \left (3 r +5\right )^{3}}\) \(\frac {110495}{57395628}\)
\(b_{4}\) \(\frac {\left (2 r +1\right )^{2} \left (3+2 r \right )^{2} \left (2 r -1\right )^{2} \left (4 r^{2}+20 r +25\right )}{6561 \left (r +\frac {2}{3}\right )^{2} \left (r +\frac {8}{3}\right )^{2} \left (r +\frac {11}{3}\right )^{2} \left (r +\frac {5}{3}\right )^{2}}\) \(\frac {874225}{24794911296}\) \(\frac {28 \left (3+2 r \right ) \left (864 r^{7}+10368 r^{6}+51048 r^{5}+132484 r^{4}+193156 r^{3}+154855 r^{2}+60645 r +7925\right ) \left (4 r^{2}-1\right )}{\left (3 r +5\right )^{3} \left (3 r +11\right )^{3} \left (3 r +8\right )^{3} \left (3 r +2\right )^{3}}\) \(-{\frac {62786185}{148769467776}}\)
\(b_{5}\) \(-\frac {\left (2 r -1\right )^{2} \left (3+2 r \right )^{2} \left (2 r +1\right )^{2} \left (7+2 r \right )^{2} \left (5+2 r \right )^{2}}{\left (3 r +2\right )^{2} \left (3 r +8\right )^{2} \left (3 r +11\right )^{2} \left (3 r +5\right )^{2} \left (9 r^{2}+84 r +196\right )}\) \(-{\frac {18498601}{2008387814976}}\) \(-\frac {70 \left (1296 r^{8}+21600 r^{7}+150552 r^{6}+569400 r^{5}+1266613 r^{4}+1674900 r^{3}+1258809 r^{2}+471600 r +59492\right ) \left (3+2 r \right ) \left (7+2 r \right ) \left (5+2 r \right ) \left (4 r^{2}-1\right )}{14348907 \left (r +\frac {2}{3}\right )^{3} \left (r +\frac {14}{3}\right )^{3} \left (r +\frac {8}{3}\right )^{3} \left (r +\frac {11}{3}\right )^{3} \left (r +\frac {5}{3}\right )^{3}}\) \(\frac {1315043653}{12050326889856}\)

The above table gives all values of \(b_{n}\) needed. Hence the second solution is \begin{align*} y_{2}\left (x \right )&=y_{1}\left (x \right ) \ln \left (x \right )+b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{\frac {1}{3}} \left (\frac {14 x}{81}-\frac {35 x^{2}}{2916}+\frac {110495 x^{3}}{57395628}-\frac {62786185 x^{4}}{148769467776}+\frac {1315043653 x^{5}}{12050326889856}+O\left (x^{6}\right )\right ) \\ \end{align*} Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) + c_{2} \left (x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{\frac {1}{3}} \left (\frac {14 x}{81}-\frac {35 x^{2}}{2916}+\frac {110495 x^{3}}{57395628}-\frac {62786185 x^{4}}{148769467776}+\frac {1315043653 x^{5}}{12050326889856}+O\left (x^{6}\right )\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right )+c_{2} \left (x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{\frac {1}{3}} \left (\frac {14 x}{81}-\frac {35 x^{2}}{2916}+\frac {110495 x^{3}}{57395628}-\frac {62786185 x^{4}}{148769467776}+\frac {1315043653 x^{5}}{12050326889856}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right )+c_{2} \left (x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{\frac {1}{3}} \left (\frac {14 x}{81}-\frac {35 x^{2}}{2916}+\frac {110495 x^{3}}{57395628}-\frac {62786185 x^{4}}{148769467776}+\frac {1315043653 x^{5}}{12050326889856}+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right )+c_{2} \left (x^{\frac {1}{3}} \left (1-\frac {x}{81}+\frac {25 x^{2}}{26244}-\frac {3025 x^{3}}{19131876}+\frac {874225 x^{4}}{24794911296}-\frac {18498601 x^{5}}{2008387814976}+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{\frac {1}{3}} \left (\frac {14 x}{81}-\frac {35 x^{2}}{2916}+\frac {110495 x^{3}}{57395628}-\frac {62786185 x^{4}}{148769467776}+\frac {1315043653 x^{5}}{12050326889856}+O\left (x^{6}\right )\right )\right ) \] Verified OK.

15.22.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (9+4 x \right ) \left (\frac {d}{d x}y^{\prime }\right )+3 x y^{\prime }+\left (1+x \right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\left (1+x \right ) y}{x^{2} \left (9+4 x \right )}-\frac {3 y^{\prime }}{x \left (9+4 x \right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {3 y^{\prime }}{x \left (9+4 x \right )}+\frac {\left (1+x \right ) y}{x^{2} \left (9+4 x \right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {3}{x \left (9+4 x \right )}, P_{3}\left (x \right )=\frac {1+x}{x^{2} \left (9+4 x \right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{3} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{9} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (9+4 x \right ) \left (\frac {d}{d x}y^{\prime }\right )+3 x y^{\prime }+\left (1+x \right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..3 \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (-1+3 r \right )^{2} x^{r}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k} \left (3 k +3 r -1\right )^{2}+a_{k -1} \left (2 k -3+2 r \right )^{2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (-1+3 r \right )^{2}=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r =\frac {1}{3} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (3 k +3 r -1\right )^{2}+a_{k -1} \left (2 k -3+2 r \right )^{2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & a_{k +1} \left (3 k +2+3 r \right )^{2}+a_{k} \left (2 k +2 r -1\right )^{2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (2 k +2 r -1\right )^{2}}{\left (3 k +2+3 r \right )^{2}} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {1}{3} \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (2 k -\frac {1}{3}\right )^{2}}{\left (3 k +3\right )^{2}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {1}{3} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {1}{3}}, a_{k +1}=-\frac {a_{k} \left (2 k -\frac {1}{3}\right )^{2}}{\left (3 k +3\right )^{2}}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      <- heuristic approach successful 
      -> solution has integrals; searching for one without integrals... 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         <- hyper3 successful: received ODE is equivalent to the 2F1 ODE 
      <- hypergeometric solution without integrals succesful 
   <- hypergeometric successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 69

Order:=6; 
dsolve(x^2*(9+4*x)*diff(y(x),x$2)+3*x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = x^{\frac {1}{3}} \left (\left (c_{2} \ln \left (x \right )+c_{1} \right ) \left (1-\frac {1}{81} x +\frac {25}{26244} x^{2}-\frac {3025}{19131876} x^{3}+\frac {874225}{24794911296} x^{4}-\frac {18498601}{2008387814976} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (\frac {14}{81} x -\frac {35}{2916} x^{2}+\frac {110495}{57395628} x^{3}-\frac {62786185}{148769467776} x^{4}+\frac {1315043653}{12050326889856} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.008 (sec). Leaf size: 134

AsymptoticDSolveValue[x^2*(9+4*x)*y''[x]+3*x*y'[x]+(1+x)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \sqrt [3]{x} \left (-\frac {18498601 x^5}{2008387814976}+\frac {874225 x^4}{24794911296}-\frac {3025 x^3}{19131876}+\frac {25 x^2}{26244}-\frac {x}{81}+1\right )+c_2 \left (\sqrt [3]{x} \left (\frac {1315043653 x^5}{12050326889856}-\frac {62786185 x^4}{148769467776}+\frac {110495 x^3}{57395628}-\frac {35 x^2}{2916}+\frac {14 x}{81}\right )+\sqrt [3]{x} \left (-\frac {18498601 x^5}{2008387814976}+\frac {874225 x^4}{24794911296}-\frac {3025 x^3}{19131876}+\frac {25 x^2}{26244}-\frac {x}{81}+1\right ) \log (x)\right ) \]