16.44 problem 40

16.44.1 Maple step by step solution

Internal problem ID [1456]
Internal file name [OUTPUT/1457_Sunday_June_05_2022_02_18_40_AM_84123780/index.tex]

Book: Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section: Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS III. Exercises 7.7. Page 389
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }-\left (x^{2}+15\right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (4 x^{4}+4 x^{2}\right ) y^{\prime \prime }+\left (4 x^{3}+8 x \right ) y^{\prime }+\left (-x^{2}-15\right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {x^{2}+2}{x \left (x^{2}+1\right )}\\ q(x) &= -\frac {x^{2}+15}{4 x^{2} \left (x^{2}+1\right )}\\ \end {align*}

Table 441: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {x^{2}+2}{x \left (x^{2}+1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -i\) \(\text {``regular''}\)
\(x = i\) \(\text {``regular''}\)
\(q(x)=-\frac {x^{2}+15}{4 x^{2} \left (x^{2}+1\right )}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = -i\) \(\text {``regular''}\)
\(x = i\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, -i, i, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+\left (4 x^{3}+8 x \right ) y^{\prime }+\left (-x^{2}-15\right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 4 x^{2} \left (x^{2}+1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (4 x^{3}+8 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (-x^{2}-15\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}8 x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r +2} a_{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-15 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right ) \left (n +r -1\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r +2} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +r +2} a_{n}\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}\left (-a_{n -2} x^{n +r}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}4 a_{n -2} \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}8 x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =2}{\sum }}\left (-a_{n -2} x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-15 a_{n} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 4 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )+8 x^{n +r} a_{n} \left (n +r \right )-15 a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ 4 x^{r} a_{0} r \left (-1+r \right )+8 x^{r} a_{0} r -15 a_{0} x^{r} = 0 \] Or \[ \left (4 x^{r} r \left (-1+r \right )+8 x^{r} r -15 x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (4 r^{2}+4 r -15\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 4 r^{2}+4 r -15 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {3}{2}}\\ r_2 &= -{\frac {5}{2}} \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (4 r^{2}+4 r -15\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {3}{2}}, -{\frac {5}{2}}\right ]\).

Since \(r_1 - r_2 = 4\) is an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= x^{\frac {3}{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\frac {\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}}{x^{\frac {5}{2}}} \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {3}{2}}\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -\frac {5}{2}}\right ) \end {align*}

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). Substituting \(n = 1\) in Eq. (2B) gives \[ a_{1} = 0 \] For \(2\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n -2} \left (n +r -2\right ) \left (n -3+r \right )+4 a_{n} \left (n +r \right ) \left (n +r -1\right )+4 a_{n -2} \left (n +r -2\right )+8 a_{n} \left (n +r \right )-a_{n -2}-15 a_{n} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {\left (2 n +2 r -5\right ) a_{n -2}}{2 n +2 r +5}\tag {4} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{n} = -\frac {\left (n -1\right ) a_{n -2}}{n +4}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {3}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {1-2 r}{9+2 r} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{2}=-{\frac {1}{6}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1-2 r}{9+2 r}\) \(-{\frac {1}{6}}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1-2 r}{9+2 r}\) \(-{\frac {1}{6}}\)
\(a_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{4}={\frac {1}{16}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1-2 r}{9+2 r}\) \(-{\frac {1}{6}}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}\) \(\frac {1}{16}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(0\) \(0\)
\(a_{2}\) \(\frac {1-2 r}{9+2 r}\) \(-{\frac {1}{6}}\)
\(a_{3}\) \(0\) \(0\)
\(a_{4}\) \(\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}\) \(\frac {1}{16}\)
\(a_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{\frac {3}{2}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{\frac {3}{2}} \left (1-\frac {x^{2}}{6}+\frac {x^{4}}{16}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Let \[ r_{1}-r_{2} = N \] Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=4\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r\rightarrow r_{2}}a_{4}\left (r \right )\). If this limit exists, then \(C = 0\), else we need to keep the log term and \(C \neq 0\). The above table shows that \begin {align*} a_N &= a_{4} \\ &= \frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117} \end {align*}

Therefore \begin {align*} \lim _{r\rightarrow r_{2}}\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}&= \lim _{r\rightarrow -{\frac {5}{2}}}\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}\\ &= {\frac {3}{8}} \end {align*}

The limit is \(\frac {3}{8}\). Since the limit exists then the log term is not needed and we can set \(C = 0\). Therefore the second solution has the form \begin {align*} y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r}\\ &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n -\frac {5}{2}} \end {align*}

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). Substituting \(n = 1\) in Eq(3) gives \[ b_{1} = 0 \] For \(2\le n\) the recursive equation is \begin{equation} \tag{4} 4 b_{n -2} \left (n +r -2\right ) \left (n -3+r \right )+4 b_{n} \left (n +r \right ) \left (n +r -1\right )+4 b_{n -2} \left (n +r -2\right )+8 b_{n} \left (n +r \right )-b_{n -2}-15 b_{n} = 0 \end{equation} Which for for the root \(r = -{\frac {5}{2}}\) becomes \begin{equation} \tag{4A} 4 b_{n -2} \left (n -\frac {9}{2}\right ) \left (n -\frac {11}{2}\right )+4 b_{n} \left (n -\frac {5}{2}\right ) \left (n -\frac {7}{2}\right )+4 b_{n -2} \left (n -\frac {9}{2}\right )+8 b_{n} \left (n -\frac {5}{2}\right )-b_{n -2}-15 b_{n} = 0 \end{equation} Solving for \(b_{n}\) from the recursive equation (4) gives \[ b_{n} = -\frac {\left (2 n +2 r -5\right ) b_{n -2}}{2 n +2 r +5}\tag {5} \] Which for the root \(r = -{\frac {5}{2}}\) becomes \[ b_{n} = -\frac {\left (2 n -10\right ) b_{n -2}}{2 n}\tag {6} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = -{\frac {5}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=-\frac {2 r -1}{9+2 r} \] Which for the root \(r = -{\frac {5}{2}}\) becomes \[ b_{2}={\frac {3}{2}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1-2 r}{9+2 r}\) \(\frac {3}{2}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1-2 r}{9+2 r}\) \(\frac {3}{2}\)
\(b_{3}\) \(0\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {4 r^{2}+4 r -3}{\left (9+2 r \right ) \left (13+2 r \right )} \] Which for the root \(r = -{\frac {5}{2}}\) becomes \[ b_{4}={\frac {3}{8}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1-2 r}{9+2 r}\) \(\frac {3}{2}\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}\) \(\frac {3}{8}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(0\) \(0\)
\(b_{2}\) \(\frac {1-2 r}{9+2 r}\) \(\frac {3}{2}\)
\(b_{3}\) \(0\) \(0\)
\(b_{4}\) \(\frac {4 r^{2}+4 r -3}{4 r^{2}+44 r +117}\) \(\frac {3}{8}\)
\(b_{5}\) \(0\) \(0\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= x^{\frac {3}{2}} \left (b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \right ) \\ &= \frac {1+\frac {3 x^{2}}{2}+\frac {3 x^{4}}{8}+O\left (x^{6}\right )}{x^{\frac {5}{2}}} \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{\frac {3}{2}} \left (1-\frac {x^{2}}{6}+\frac {x^{4}}{16}+O\left (x^{6}\right )\right ) + \frac {c_{2} \left (1+\frac {3 x^{2}}{2}+\frac {3 x^{4}}{8}+O\left (x^{6}\right )\right )}{x^{\frac {5}{2}}} \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{\frac {3}{2}} \left (1-\frac {x^{2}}{6}+\frac {x^{4}}{16}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1+\frac {3 x^{2}}{2}+\frac {3 x^{4}}{8}+O\left (x^{6}\right )\right )}{x^{\frac {5}{2}}} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{\frac {3}{2}} \left (1-\frac {x^{2}}{6}+\frac {x^{4}}{16}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1+\frac {3 x^{2}}{2}+\frac {3 x^{4}}{8}+O\left (x^{6}\right )\right )}{x^{\frac {5}{2}}} \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{\frac {3}{2}} \left (1-\frac {x^{2}}{6}+\frac {x^{4}}{16}+O\left (x^{6}\right )\right )+\frac {c_{2} \left (1+\frac {3 x^{2}}{2}+\frac {3 x^{4}}{8}+O\left (x^{6}\right )\right )}{x^{\frac {5}{2}}} \] Verified OK.

16.44.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+\left (4 x^{3}+8 x \right ) y^{\prime }+\left (-x^{2}-15\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {\left (x^{2}+2\right ) y^{\prime }}{x \left (x^{2}+1\right )}+\frac {\left (x^{2}+15\right ) y}{4 x^{2} \left (x^{2}+1\right )} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {\left (x^{2}+2\right ) y^{\prime }}{x \left (x^{2}+1\right )}-\frac {\left (x^{2}+15\right ) y}{4 x^{2} \left (x^{2}+1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x^{2}+2}{x \left (x^{2}+1\right )}, P_{3}\left (x \right )=-\frac {x^{2}+15}{4 x^{2} \left (x^{2}+1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=2 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-\frac {15}{4} \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (x^{2}+2\right ) y^{\prime }+\left (-x^{2}-15\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..3 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..4 \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (5+2 r \right ) \left (-3+2 r \right ) x^{r}+a_{1} \left (7+2 r \right ) \left (-1+2 r \right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (2 k +2 r +5\right ) \left (2 k +2 r -3\right )+a_{k -2} \left (2 k +2 r -3\right ) \left (2 k -5+2 r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & \left (5+2 r \right ) \left (-3+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-\frac {5}{2}, \frac {3}{2}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (7+2 r \right ) \left (-1+2 r \right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 4 \left (k +r -\frac {3}{2}\right ) \left (\left (k +r -\frac {5}{2}\right ) a_{k -2}+a_{k} \left (k +r +\frac {5}{2}\right )\right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & 4 \left (k +\frac {1}{2}+r \right ) \left (\left (k -\frac {1}{2}+r \right ) a_{k}+a_{k +2} \left (k +\frac {9}{2}+r \right )\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {\left (2 k +2 r -1\right ) a_{k}}{2 k +9+2 r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\frac {5}{2} \\ {} & {} & a_{k +2}=-\frac {\left (2 k -6\right ) a_{k}}{2 k +4} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\frac {5}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\frac {5}{2}}, a_{k +2}=-\frac {\left (2 k -6\right ) a_{k}}{2 k +4}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {3}{2} \\ {} & {} & a_{k +2}=-\frac {\left (2 k +2\right ) a_{k}}{2 k +12} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {3}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {3}{2}}, a_{k +2}=-\frac {\left (2 k +2\right ) a_{k}}{2 k +12}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\frac {5}{2}}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {3}{2}}\right ), a_{k +2}=-\frac {\left (2 k -6\right ) a_{k}}{2 k +4}, a_{1}=0, b_{k +2}=-\frac {\left (2 k +2\right ) b_{k}}{2 k +12}, b_{1}=0\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Reducible group (found another exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

Order:=6; 
dsolve(4*x^2*(1+x^2)*diff(y(x),x$2)+4*x*(2+x^2)*diff(y(x),x)-(15+x^2)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = \frac {c_{1} x^{4} \left (1-\frac {1}{6} x^{2}+\frac {1}{16} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (-144-216 x^{2}-54 x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x^{\frac {5}{2}}} \]

Solution by Mathematica

Time used: 0.014 (sec). Leaf size: 58

AsymptoticDSolveValue[4*x^2*(1+x^2)*y''[x]+4*x*(2+x^2)*y'[x]-(15+x^2)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (\frac {3 x^{3/2}}{8}+\frac {1}{x^{5/2}}+\frac {3}{2 \sqrt {x}}\right )+c_2 \left (\frac {x^{11/2}}{16}-\frac {x^{7/2}}{6}+x^{3/2}\right ) \]