19.11 problem section 9.3, problem 11

19.11.1 Solved as higher order constant coeff ode
19.11.2 Maple step by step solution
19.11.3 Maple trace
19.11.4 Maple dsolve solution
19.11.5 Mathematica DSolve solution

Internal problem ID [2158]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.3. Undetermined Coefficients for Higher Order Equations. Page 495
Problem number : section 9.3, problem 11
Date solved : Sunday, October 06, 2024 at 03:12:02 AM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

Solve

\begin{align*} y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y&=2 \,{\mathrm e}^{4 x} \left (13+15 x \right ) \end{align*}

19.11.1 Solved as higher order constant coeff ode

Time used: 0.128 (sec)

The characteristic equation is

\[ \lambda ^{3}-7 \lambda ^{2}+8 \lambda +16 = 0 \]

The roots of the above equation are

\begin{align*} \lambda _1 &= -1\\ \lambda _2 &= 4\\ \lambda _3 &= 4 \end{align*}

Therefore the homogeneous solution is

\[ y_h(x)={\mathrm e}^{-x} c_1 +{\mathrm e}^{4 x} c_2 +x \,{\mathrm e}^{4 x} c_3 \]

The fundamental set of solutions for the homogeneous solution are the following

\begin{align*} y_1 &= {\mathrm e}^{-x}\\ y_2 &= {\mathrm e}^{4 x}\\ y_3 &= {\mathrm e}^{4 x} x \end{align*}

This is higher order nonhomogeneous ODE. Let the solution be

\[ y = y_h + y_p \]

Where \(y_h\) is the solution to the homogeneous ODE And \(y_p\) is a particular solution to the nonhomogeneous ODE. \(y_h\) is the solution to

\[ y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = 0 \]

Now the particular solution to the given ODE is found

\[ y^{\prime \prime \prime }-7 y^{\prime \prime }+8 y^{\prime }+16 y = -\left (-26-30 x \right ) {\mathrm e}^{4 x} \]

The particular solution is now found using the method of undetermined coefficients.

Looking at the RHS of the ode, which is

\[ -\left (-26-30 x \right ) {\mathrm e}^{4 x} \]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

\[ [\{{\mathrm e}^{4 x} x, {\mathrm e}^{4 x}\}] \]

While the set of the basis functions for the homogeneous solution found earlier is

\[ \{{\mathrm e}^{4 x} x, {\mathrm e}^{-x}, {\mathrm e}^{4 x}\} \]

Since \({\mathrm e}^{4 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes

\[ [\{x^{2} {\mathrm e}^{4 x}, {\mathrm e}^{4 x} x\}] \]

Since \({\mathrm e}^{4 x} x\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes

\[ [\{x^{2} {\mathrm e}^{4 x}, x^{3} {\mathrm e}^{4 x}\}] \]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

\[ y_p = A_{1} x^{2} {\mathrm e}^{4 x}+A_{2} x^{3} {\mathrm e}^{4 x} \]

The unknowns \(\{A_{1}, A_{2}\}\) are found by substituting the above trial solution \(y_p\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

\[ 10 A_{1} {\mathrm e}^{4 x}+6 A_{2} {\mathrm e}^{4 x}+30 A_{2} x \,{\mathrm e}^{4 x} = 2 \,{\mathrm e}^{4 x} \left (13+15 x \right ) \]

Solving for the unknowns by comparing coefficients results in

\[ [A_{1} = 2, A_{2} = 1] \]

Substituting the above back in the above trial solution \(y_p\), gives the particular solution

\[ y_p = 2 x^{2} {\mathrm e}^{4 x}+x^{3} {\mathrm e}^{4 x} \]

Therefore the general solution is

\begin{align*} y &= y_h + y_p \\ &= \left ({\mathrm e}^{-x} c_1 +{\mathrm e}^{4 x} c_2 +x \,{\mathrm e}^{4 x} c_3\right ) + \left (2 x^{2} {\mathrm e}^{4 x}+x^{3} {\mathrm e}^{4 x}\right ) \\ \end{align*}

19.11.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )-7 \frac {d^{2}}{d x^{2}}y \left (x \right )+8 \frac {d}{d x}y \left (x \right )+16 y \left (x \right )=2 \,{\mathrm e}^{4 x} \left (13+15 x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right ) \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \left (x \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=\frac {d}{d x}y \left (x \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=\frac {d^{2}}{d x^{2}}y \left (x \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d x}y_{3}\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y_{3}\left (x \right )=30 \,{\mathrm e}^{4 x} x +26 \,{\mathrm e}^{4 x}+7 y_{3}\left (x \right )-8 y_{2}\left (x \right )-16 y_{1}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=\frac {d}{d x}y_{1}\left (x \right ), y_{3}\left (x \right )=\frac {d}{d x}y_{2}\left (x \right ), \frac {d}{d x}y_{3}\left (x \right )=30 \,{\mathrm e}^{4 x} x +26 \,{\mathrm e}^{4 x}+7 y_{3}\left (x \right )-8 y_{2}\left (x \right )-16 y_{1}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & -8 & 7 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right )+\left [\begin {array}{c} 0 \\ 0 \\ 30 \,{\mathrm e}^{4 x} x +26 \,{\mathrm e}^{4 x} \end {array}\right ] \\ \bullet & {} & \textrm {Define the forcing function}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{f}}\left (x \right )=\left [\begin {array}{c} 0 \\ 0 \\ 30 \,{\mathrm e}^{4 x} x +26 \,{\mathrm e}^{4 x} \end {array}\right ] \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & -8 & 7 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{y}}\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right )+{\moverset {\rightarrow }{f}} \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [4, \left [\begin {array}{c} \frac {1}{16} \\ \frac {1}{4} \\ 1 \end {array}\right ]\right ], \left [4, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-x}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair, with eigenvalue of algebraic multiplicity 2}\hspace {3pt} \\ {} & {} & \left [4, \left [\begin {array}{c} \frac {1}{16} \\ \frac {1}{4} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {First solution from eigenvalue}\hspace {3pt} 4 \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}\left (x \right )={\mathrm e}^{4 x}\cdot \left [\begin {array}{c} \frac {1}{16} \\ \frac {1}{4} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Form of the 2nd homogeneous solution where}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {is to be solved for,}\hspace {3pt} \lambda =4\hspace {3pt}\textrm {is the eigenvalue, and}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is the eigenvector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}\left (x \right )={\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Note that the}\hspace {3pt} x \hspace {3pt}\textrm {multiplying}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {makes this solution linearly independent to the 1st solution obtained from}\hspace {3pt} \lambda =4 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} {\moverset {\rightarrow }{y}}_{3}\left (x \right )\hspace {3pt}\textrm {into the homogeneous system}\hspace {3pt} \\ {} & {} & \lambda \,{\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda x} {\moverset {\rightarrow }{v}}=\left ({\mathrm e}^{\lambda x} A \right )\cdot \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Use the fact that}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is an eigenvector of}\hspace {3pt} A \\ {} & {} & \lambda \,{\mathrm e}^{\lambda x} \left (x {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda x} {\moverset {\rightarrow }{v}}={\mathrm e}^{\lambda x} \left (\lambda x {\moverset {\rightarrow }{v}}+A \cdot {\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Simplify equation}\hspace {3pt} \\ {} & {} & \lambda {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Make use of the identity matrix}\hspace {3pt} \mathrm {I} \\ {} & {} & \left (\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Condition}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {must meet for}\hspace {3pt} {\moverset {\rightarrow }{y}}_{3}\left (x \right )\hspace {3pt}\textrm {to be a solution to the homogeneous system}\hspace {3pt} \\ {} & {} & \left (A -\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}={\moverset {\rightarrow }{v}} \\ \bullet & {} & \textrm {Choose}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {to use in the second solution to the homogeneous system from eigenvalue}\hspace {3pt} 4 \\ {} & {} & \left (\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -16 & -8 & 7 \end {array}\right ]-4\cdot \left [\begin {array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\right )\cdot {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} \frac {1}{16} \\ \frac {1}{4} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Choice of}\hspace {3pt} {\moverset {\rightarrow }{p}} \\ {} & {} & {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} -\frac {1}{64} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Second solution from eigenvalue}\hspace {3pt} 4 \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}\left (x \right )={\mathrm e}^{4 x}\cdot \left (x \cdot \left [\begin {array}{c} \frac {1}{16} \\ \frac {1}{4} \\ 1 \end {array}\right ]+\left [\begin {array}{c} -\frac {1}{64} \\ 0 \\ 0 \end {array}\right ]\right ) \\ \bullet & {} & \textrm {General solution of the system of ODEs can be written in terms of the particular solution}\hspace {3pt} {\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\mathit {C1} {\moverset {\rightarrow }{y}}_{1}+\mathit {C2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+\mathit {C3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+{\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ \square & {} & \textrm {Fundamental matrix}\hspace {3pt} \\ {} & \circ & \textrm {Let}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {be the matrix whose columns are the independent solutions of the homogeneous system.}\hspace {3pt} \\ {} & {} & \phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{-x} & \frac {{\mathrm e}^{4 x}}{16} & {\mathrm e}^{4 x} \left (\frac {x}{16}-\frac {1}{64}\right ) \\ -{\mathrm e}^{-x} & \frac {{\mathrm e}^{4 x}}{4} & \frac {{\mathrm e}^{4 x} x}{4} \\ {\mathrm e}^{-x} & {\mathrm e}^{4 x} & {\mathrm e}^{4 x} x \end {array}\right ] \\ {} & \circ & \textrm {The fundamental matrix,}\hspace {3pt} \Phi \left (x \right )\hspace {3pt}\textrm {is a normalized version of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {satisfying}\hspace {3pt} \Phi \left (0\right )=I \hspace {3pt}\textrm {where}\hspace {3pt} I \hspace {3pt}\textrm {is the identity matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\phi \left (x \right )\cdot \phi \left (0\right )^{-1} \\ {} & \circ & \textrm {Substitute the value of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {and}\hspace {3pt} \phi \left (0\right ) \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{-x} & \frac {{\mathrm e}^{4 x}}{16} & {\mathrm e}^{4 x} \left (\frac {x}{16}-\frac {1}{64}\right ) \\ -{\mathrm e}^{-x} & \frac {{\mathrm e}^{4 x}}{4} & \frac {{\mathrm e}^{4 x} x}{4} \\ {\mathrm e}^{-x} & {\mathrm e}^{4 x} & {\mathrm e}^{4 x} x \end {array}\right ]\cdot \left [\begin {array}{ccc} 1 & \frac {1}{16} & -\frac {1}{64} \\ -1 & \frac {1}{4} & 0 \\ 1 & 1 & 0 \end {array}\right ]^{-1} \\ {} & \circ & \textrm {Evaluate and simplify to get the fundamental matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} \left (1-4 x \right ) {\mathrm e}^{4 x} & -\frac {4 \,{\mathrm e}^{-x}}{5}+\frac {4 \,{\mathrm e}^{4 x}}{5}-3 \,{\mathrm e}^{4 x} x & \frac {{\mathrm e}^{-x}}{5}-\frac {{\mathrm e}^{4 x}}{5}+{\mathrm e}^{4 x} x \\ -16 \,{\mathrm e}^{4 x} x & \frac {4 \,{\mathrm e}^{-x}}{5}+\frac {{\mathrm e}^{4 x}}{5}-12 \,{\mathrm e}^{4 x} x & -\frac {{\mathrm e}^{-x}}{5}+\frac {{\mathrm e}^{4 x}}{5}+4 \,{\mathrm e}^{4 x} x \\ -64 \,{\mathrm e}^{4 x} x & -\frac {4 \,{\mathrm e}^{-x}}{5}+\frac {4 \,{\mathrm e}^{4 x}}{5}-48 \,{\mathrm e}^{4 x} x & \frac {{\mathrm e}^{-x}}{5}+\frac {4 \,{\mathrm e}^{4 x}}{5}+16 \,{\mathrm e}^{4 x} x \end {array}\right ] \\ \square & {} & \textrm {Find a particular solution of the system of ODEs using variation of parameters}\hspace {3pt} \\ {} & \circ & \textrm {Let the particular solution be the fundamental matrix multiplied by}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {and solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & \circ & \textrm {Take the derivative of the particular solution}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{y}}_{p}\left (x \right )=\left (\frac {d}{d x}\Phi \left (x \right )\right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot \left (\frac {d}{d x}{\moverset {\rightarrow }{v}}\left (x \right )\right ) \\ {} & \circ & \textrm {Substitute particular solution and its derivative into the system of ODEs}\hspace {3pt} \\ {} & {} & \left (\frac {d}{d x}\Phi \left (x \right )\right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot \left (\frac {d}{d x}{\moverset {\rightarrow }{v}}\left (x \right )\right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system}\hspace {3pt} \\ {} & {} & A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot \left (\frac {d}{d x}{\moverset {\rightarrow }{v}}\left (x \right )\right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Cancel like terms}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )\cdot \left (\frac {d}{d x}{\moverset {\rightarrow }{v}}\left (x \right )\right )={\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Multiply by the inverse of the fundamental matrix}\hspace {3pt} \\ {} & {} & \frac {d}{d x}{\moverset {\rightarrow }{v}}\left (x \right )=\Phi \left (x \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Integrate to solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{v}}\left (x \right )=\int _{0}^{x}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {into the equation for the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot \left (\int _{0}^{x}\Phi \left (s \right )^{-1}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \right ) \\ {} & \circ & \textrm {Plug in the fundamental matrix and the forcing function and compute}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\left [\begin {array}{c} \frac {\left (25 x^{3}+50 x^{2}-20 x +4\right ) {\mathrm e}^{4 x}}{5}-\frac {4 \,{\mathrm e}^{-x}}{5} \\ \frac {\left (100 x^{3}+275 x^{2}+20 x -4\right ) {\mathrm e}^{4 x}}{5}+\frac {4 \,{\mathrm e}^{-x}}{5} \\ \frac {2 \left (200 x^{3}+550 x^{2}+55 x +2\right ) {\mathrm e}^{4 x}}{5}-\frac {4 \,{\mathrm e}^{-x}}{5} \end {array}\right ] \\ \bullet & {} & \textrm {Plug particular solution back into general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\mathit {C1} {\moverset {\rightarrow }{y}}_{1}+\mathit {C2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+\mathit {C3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+\left [\begin {array}{c} \frac {\left (25 x^{3}+50 x^{2}-20 x +4\right ) {\mathrm e}^{4 x}}{5}-\frac {4 \,{\mathrm e}^{-x}}{5} \\ \frac {\left (100 x^{3}+275 x^{2}+20 x -4\right ) {\mathrm e}^{4 x}}{5}+\frac {4 \,{\mathrm e}^{-x}}{5} \\ \frac {2 \left (200 x^{3}+550 x^{2}+55 x +2\right ) {\mathrm e}^{4 x}}{5}-\frac {4 \,{\mathrm e}^{-x}}{5} \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (x \right )=\frac {\left (256+1600 x^{3}+3200 x^{2}+20 \left (-64+\mathit {C3} \right ) x +20 \mathit {C2} -5 \mathit {C3} \right ) {\mathrm e}^{4 x}}{320}+\frac {{\mathrm e}^{-x} \left (5 \mathit {C1} -4\right )}{5} \end {array} \]

19.11.3 Maple trace
`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 3; linear nonhomogeneous with symmetry [0,1] 
trying high order linear exact nonhomogeneous 
trying differential order: 3; missing the dependent variable 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 
19.11.4 Maple dsolve solution

Solving time : 0.008 (sec)
Leaf size : 29

dsolve(diff(diff(diff(y(x),x),x),x)-7*diff(diff(y(x),x),x)+8*diff(y(x),x)+16*y(x) = 2*exp(4*x)*(13+15*x), 
       y(x),singsol=all)
 
\[ y = \left (x^{3}+x c_3 +2 x^{2}+c_2 \right ) {\mathrm e}^{4 x}+{\mathrm e}^{-x} c_1 \]
19.11.5 Mathematica DSolve solution

Solving time : 0.03 (sec)
Leaf size : 42

DSolve[{D[y[x],{x,3}]-7*D[y[x],{x,2}]+8*D[y[x],x]+16*y[x]==2*Exp[4*x]*(13+15*x),{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{4 x} \left (x^3+2 x^2+\left (-\frac {4}{5}+c_3\right ) x+\frac {4}{25}+c_2\right )+c_1 e^{-x} \]