2.1.27 Problem 27
Internal
problem
ID
[10285]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
27
Date
solved
:
Monday, January 26, 2026 at 09:33:06 PM
CAS
classification
:
[_Riccati]
2.1.27.1 Solved using first_order_ode_riccati
4.606 (sec)
Entering first order ode riccati solver
\begin{align*}
y^{\prime }&=\sin \left (x \right )+y^{2} \\
\end{align*}
In canonical form the ODE is \begin{align*} y' &= F(x,y)\\ &= \sin \left (x \right )+y^{2} \end{align*}
This is a Riccati ODE. Comparing the ODE to solve
\[
y' = \sin \left (x \right )+y^{2}
\]
With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \]
Shows
that \(f_0(x)=\sin \left (x \right )\), \(f_1(x)=0\) and \(f_2(x)=1\). Let \begin{align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end{align*}
Using the above substitution in the given ODE results (after some simplification) in a second
order ODE to solve for \(u(x)\) which is
\begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end{align*}
But
\begin{align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=\sin \left (x \right ) \end{align*}
Substituting the above terms back in equation (2) gives
\[
u^{\prime \prime }\left (x \right )+\sin \left (x \right ) u \left (x \right ) = 0
\]
Unable to solve. Will ask Maple to solve
this ode now.
The solution for \(u \left (x \right )\) is
\begin{equation}
\tag{3} u \left (x \right ) = c_1 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+c_2 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )
\end{equation}
Taking derivative gives \begin{equation}
\tag{4} u^{\prime }\left (x \right ) = \frac {c_1 \operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {c_2 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}
\end{equation}
Substituting equations (3,4) into (1) results in \begin{align*}
y &= \frac {-u'}{f_2 u} \\
y &= \frac {-u'}{u} \\
y &= -\frac {\frac {c_1 \operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {c_2 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}}{c_1 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+c_2 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )} \\
\end{align*}
Doing change of constants, the above solution becomes \[
y = -\frac {\frac {\operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {c_3 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}}{\operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+c_3 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}
\]
Simplifying the above gives \begin{align*}
y &= \frac {-c_3 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )-\operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2 c_3 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+2 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )} \\
\end{align*}
|
|
|
| Direction field \(y^{\prime } = \sin \left (x \right )+y^{2}\) | Isoclines for \(y^{\prime } = \sin \left (x \right )+y^{2}\) |
Summary of solutions found
\begin{align*}
y &= \frac {-c_3 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )-\operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2 c_3 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+2 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )} \\
\end{align*}
2.1.27.2 ✓ Maple. Time used: 0.002 (sec). Leaf size: 59
ode:=diff(y(x),x) = sin(x)+y(x)^2;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {-c_1 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )-\operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2 c_1 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+2 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
trying Riccati sub-methods:
trying Riccati_symmetries
trying Riccati to 2nd Order
-> Calling odsolve with the ODE, diff(diff(y(x),x),x) = -sin(x)*y(x), y(x)
*** Sublevel 2 ***
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a \
power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int\
(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebi\
us
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a powe\
r @ Moebius
Equivalence transformation and function parameters: {t = 1/2*t+1\
/2}, {kappa = -20, mu = -32}
<- Equivalence to the rational form of Mathieu ODE successful
<- Mathieu successful
<- special function solution successful
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
(-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = \
0
<- change of variables successful
<- Riccati to 2nd Order successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\sin \left (x \right )+y \left (x \right )^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=\sin \left (x \right )+y \left (x \right )^{2} \end {array} \]
2.1.27.3 ✓ Mathematica. Time used: 0.107 (sec). Leaf size: 105
ode=D[y[x],x]==Sin[x]+y[x]^2;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {-\text {MathieuSPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]+c_1 \text {MathieuCPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]}{2 \left (\text {MathieuS}\left [0,-2,\frac {1}{4} (2 x-\pi )\right ]+c_1 \text {MathieuC}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]\right )}\\ y(x)&\to \frac {\text {MathieuCPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]}{2 \text {MathieuC}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]} \end{align*}
2.1.27.4 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-y(x)**2 - sin(x) + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -y(x)**2 - sin(x) + Derivative(y(x), x) cannot be solved by the
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode(ode,func=y(x))
('1st_power_series', 'lie_group')