1.27 problem 27
Internal
problem
ID
[7991]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
27
Date
solved
:
Monday, October 21, 2024 at 04:40:30 PM
CAS
classification
:
[_Riccati]
Solve
\begin{align*} y^{\prime }&=\sin \left (x \right )+y^{2} \end{align*}
1.27.1 Solved as first order ode of type Riccati
Time used: 0.461 (sec)
In canonical form the ODE is
\begin{align*} y' &= F(x,y)\\ &= \sin \left (x \right )+y^{2} \end{align*}
This is a Riccati ODE. Comparing the ODE to solve
\[ y' = \sin \left (x \right )+y^{2} \]
With Riccati ODE standard form
\[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \]
Shows that \(f_0(x)=\sin \left (x \right )\) , \(f_1(x)=0\) and \(f_2(x)=1\) . Let
\begin{align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end{align*}
Using the above substitution in the given ODE results (after some simplification)in a second
order ODE to solve for \(u(x)\) which is
\begin{align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end{align*}
But
\begin{align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=\sin \left (x \right ) \end{align*}
Substituting the above terms back in equation (2) gives
\begin{align*} u^{\prime \prime }\left (x \right )+\sin \left (x \right ) u \left (x \right ) = 0 \end{align*}
Solution obtained is
\[
u \left (x \right ) = c_1 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+c_2 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )
\]
Taking derivative gives
\[
u^{\prime }\left (x \right ) = \frac {c_1 \operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {c_2 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}
\]
Doing change of constants, the solution
becomes
\[
y = -\frac {\frac {c_1 \operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}+\frac {\operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2}}{c_1 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+\operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}
\]
Figure 23: Slope field plot
\(y^{\prime } = \sin \left (x \right )+y^{2}\)
1.27.2 Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }=\sin \left (x \right )+y^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\sin \left (x \right )+y^{2} \end {array} \]
1.27.3 Maple trace
Methods for first order ODEs:
1.27.4 Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 59
dsolve ( diff ( y ( x ), x ) = sin ( x )+ y ( x )^2,
y(x),singsol=all)
\[
y = \frac {-c_1 \operatorname {MathieuSPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )-\operatorname {MathieuCPrime}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}{2 c_1 \operatorname {MathieuS}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )+2 \operatorname {MathieuC}\left (0, -2, -\frac {\pi }{4}+\frac {x}{2}\right )}
\]
1.27.5 Mathematica DSolve solution
Solving time : 0.174
(sec)
Leaf size : 105
DSolve [{ D [ y [ x ], x ]== Sin [ x ]+ y [ x ]^2,{}},
y[x],x,IncludeSingularSolutions-> True ]
\begin{align*}
y(x)\to \frac {-\text {MathieuSPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]+c_1 \text {MathieuCPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]}{2 \left (\text {MathieuS}\left [0,-2,\frac {1}{4} (2 x-\pi )\right ]+c_1 \text {MathieuC}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]\right )} \\
y(x)\to \frac {\text {MathieuCPrime}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]}{2 \text {MathieuC}\left [0,-2,\frac {1}{4} (\pi -2 x)\right ]} \\
\end{align*}