Internal
problem
ID
[7993]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
29
Date
solved
:
Friday, October 25, 2024 at 12:53:23 PM
CAS
classification
:
[_Riccati]
Unknown ode type.
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }=\cos \left (x \right )+\frac {y^{2}}{x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\cos \left (x \right )+\frac {y^{2}}{x} \end {array} \]
1.29.3 Maple dsolve solution
Solving time : 0.322
(sec)
Leaf size : maple_leaf_size
dsolve(diff(y(x),x) = cos(x)+y(x)^2/x,
y(x),singsol=all)
\[ \text {No solution found} \]
1.29.4 Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{D[y[x],x]==Cos[x]+y[x]^2/x,{}},
y[x],x,IncludeSingularSolutions->True]
Not solved