Internal
problem
ID
[8689]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
29
Date
solved
:
Tuesday, December 17, 2024 at 12:57:54 PM
CAS
classification
:
[_Riccati]
Solve
Unknown ode type.
`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying Riccati to 2nd Order -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = -(diff(y(x), x))/x-cos(x)*y(x)/x, y(x)` *** Sublevel 2 *** Methods for second order ODEs: --- Trying classification methods --- trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) -> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and y(x) trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and y(x) trying to convert to a linear ODE with constant coefficients <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and y(x) trying to convert to a linear ODE with constant coefficients trying 2nd order, integrating factor of the form mu(x,y) trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) -> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and y(x) trying to convert to a linear ODE with constant coefficients -> trying with_periodic_functions in the coefficients trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) trying a symmetry of the form [xi=0, eta=F(x)] trying 2nd order exact linear trying symmetries linear in x and y(x) trying to convert to a linear ODE with constant coefficients <- unable to find a useful change of variables trying a symmetry of the form [xi=0, eta=F(x)] trying to convert to an ODE of Bessel type -> trying with_periodic_functions in the coefficients -> Trying a change of variables to reduce to Bernoulli -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2/x+y(x)+x^2*cos(x))/x, y(x), explicit` *** Sublevel 2 *** Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact Looking for potential symmetries trying Riccati trying Riccati sub-methods: trying Riccati_symmetries trying inverse_Riccati trying 1st order ODE linearizable_by_differentiation -> trying a symmetry pattern of the form [F(x)*G(y), 0] -> trying a symmetry pattern of the form [0, F(x)*G(y)] -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] trying inverse_Riccati trying 1st order ODE linearizable_by_differentiation --- Trying Lie symmetry methods, 1st order --- `, `-> Computing symmetries using: way = 4 `, `-> Computing symmetries using: way = 2 `, `-> Computing symmetries using: way = 6`
Solving time : 0.543
(sec)
Leaf size : maple_leaf_size
dsolve(diff(y(x),x) = cos(x)+y(x)^2/x, y(x),singsol=all)