2.1.39 Problem 39
Internal
problem
ID
[10297]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
39
Date
solved
:
Monday, January 26, 2026 at 09:35:38 PM
CAS
classification
:
[_quadrature]
2.1.39.1 Solved using first_order_ode_quadrature
0.036 (sec)
Entering first order ode quadrature solver
\begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*}
Since the ode has the form \(y^{\prime }=f(x)\) , then we only need to
integrate \(f(x)\) . \begin{align*} \int {dy} &= \int {0\, dx} + c_1 \\ y &= c_1 \end{align*}
Figure 2.27: Isoclines for \(\left (x -1\right ) y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= c_1 \\
\end{align*}
2.1.39.2 Solved using first_order_ode_homog_type_D2
0.299 (sec)
Entering first order ode homog type D2 solver
\begin{align*}
\left (x -1\right ) y^{\prime }&=0 \\
\end{align*}
Applying change of variables \(y = u \left (x \right ) x\) , then the ode
becomes \begin{align*} \left (x -1\right ) \left (u^{\prime }\left (x \right ) x +u \left (x \right )\right ) = 0 \end{align*}
Which is now solved The ode
\begin{equation}
u^{\prime }\left (x \right ) = -\frac {u \left (x \right )}{x}
\end{equation}
is separable as it can be written as \begin{align*} u^{\prime }\left (x \right )&= -\frac {u \left (x \right )}{x}\\ &= f(x) g(u) \end{align*}
Where
\begin{align*} f(x) &= -\frac {1}{x}\\ g(u) &= u \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(u)} \,du} &= \int { f(x) \,dx} \\
\int { \frac {1}{u}\,du} &= \int { -\frac {1}{x} \,dx} \\
\end{align*}
\[
\ln \left (u \left (x \right )\right )=\ln \left (\frac {1}{x}\right )+c_1
\]
Taking the exponential of both sides the solution becomes \[
u \left (x \right ) = \frac {c_1}{x}
\]
We now need to find
the singular solutions, these are found by finding for what values \(g(u)\) is zero, since we had to divide
by this above. Solving \(g(u)=0\) or \[
u=0
\]
for \(u \left (x \right )\) gives \begin{align*} u \left (x \right )&=0 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
u \left (x \right ) &= \frac {c_1}{x} \\
u \left (x \right ) &= 0 \\
\end{align*}
Converting \(u \left (x \right ) = \frac {c_1}{x}\) back to \(y\) gives \begin{align*} y = c_1 \end{align*}
Converting \(u \left (x \right ) = 0\) back to \(y\) gives
\begin{align*} y = 0 \end{align*}
Figure 2.28: Isoclines for \(\left (x -1\right ) y^{\prime } = 0\)
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= c_1 \\
\end{align*}
2.1.39.3 ✓ Maple. Time used: 0.000 (sec). Leaf size: 5
ode :=(-1+ x )* diff ( y ( x ), x ) = 0;
dsolve ( ode , y ( x ), singsol=all);
\[
y = c_1
\]
Maple trace
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (x -1\right ) \left (\frac {d}{d x}y \left (x \right )\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=0 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \left (\frac {d}{d x}y \left (x \right )\right )d x =\int 0d x +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y \left (x \right )=\mathit {C1} \end {array} \]
2.1.39.4 ✓ Mathematica. Time used: 0.002 (sec). Leaf size: 7
ode =( x -1)* D [ y [ x ], x ]==0;
ic ={};
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to c_1 \end{align*}
2.1.39.5 ✓ Sympy. Time used: 0.120 (sec). Leaf size: 3
from sympy import *
x = symbols( " x " )
y = Function( " y " )
ode = Eq((x - 1)*Derivative(y(x), x),0)
ics = {}
dsolve ( ode , func = y ( x ), ics = ics )
\[
y{\left (x \right )} = C_{1}
\]
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0
classify_ode ( ode , func = y ( x ))
( ' factorable ' , ' nth_algebraic ' , ' separable ' , ' 1st_exact ' , ' 1st_linear ' , ' Bernoulli ' , ' 1st_power_series ' , ' lie_group ' , ' nth_linear_euler_eq_homogeneous ' , ' nth_algebraic_Integral ' , ' separable_Integral ' , ' 1st_exact_Integral ' , ' 1st_linear_Integral ' , ' Bernoulli_Integral ' )