2.1.54 Problem 54

Solved using first_order_nonlinear_p_but_separable
Maple
Mathematica
Sympy

Internal problem ID [9038]
Book : First order enumerated odes
Section : section 1
Problem number : 54
Date solved : Sunday, March 30, 2025 at 01:59:55 PM
CAS classification : [[_homogeneous, `class G`], _rational]

Solved using first_order_nonlinear_p_but_separable

Time used: 0.758 (sec)

Solve

y3=y2x

The ode has the form

(1)(y)nm=f(x)g(y)

Where n=3,m=1,f=1x,g=y2. Hence the ode is

(y)3=y2x

Solving for y from (1) gives

y=(fg)1/3y=(fg)1/32+i3(fg)1/32y=(fg)1/32i3(fg)1/32

To be able to solve as separable ode, we have to now assume that f>0,g>0.

1x>0y2>0

Under the above assumption the differential equations become separable and can be written as

y=f1/3g1/3y=f1/3g1/3(1+i3)2y=f1/3g1/3(1+i3)2

Therefore

1g1/3dy=(f1/3)dx2g1/3(1+i3)dy=(f1/3)dx2g1/3(1+i3)dy=(f1/3)dx

Replacing f(x),g(y) by their values gives

1(y2)1/3dy=((1x)1/3)dx2(y2)1/3(1+i3)dy=((1x)1/3)dx2(y2)1/3(1+i3)dy=((1x)1/3)dx

Integrating now gives the following solutions

1(y2)1/3dy=(1x)1/3dx+c13(y2)2/3y=3x(1x)1/322(y2)1/3(1+i3)dy=(1x)1/3dx+c13(y2)2/3(1+i3)2y=3x(1x)1/322(y2)1/3(1+i3)dy=(1x)1/3dx+c13(y2)2/3(1+i3)2y=3x(1x)1/32

Therefore

3(y2)2/3y=3x(1x)1/32+c1y=x28+(1x)2/3c1x24+(1x)1/3c12x6+c1327y=x28+(1x)2/3c1x24+(1x)1/3c12x6+c1327

Summary of solutions found

3(y2)2/3y=3x(1x)1/32+c1y=x28+(1x)2/3c1x24+(1x)1/3c12x6+c1327
Maple. Time used: 0.925 (sec). Leaf size: 341
ode:=diff(y(x),x)^3 = y(x)^2/x; 
dsolve(ode,y(x), singsol=all);
 
y=0y=3x4/3c18+3x2/3c128c138+x28y=3(1i3)c12x2/316+3c1(1i3)x4/316c138+x28y=3(i31)c12x2/316+3c1(1+i3)x4/316c138+x28y=3x4/3c116+3x2/3c1232+c1364+x28y=3(1i3)c12x2/364+3(i31)c1x4/332+c1364+x28y=3(i31)c12x2/3643c1(1+i3)x4/332+c1364+x28y=3x4/3c116+3x2/3c1232c1364+x28y=3(1i3)c12x2/364+3c1(1i3)x4/332c1364+x28y=3(i31)c12x2/364+3c1(1+i3)x4/332c1364+x28

Maple trace

Methods for first order ODEs: 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   -> Solving 1st order ODE of high degree, 1st attempt 
   trying 1st order WeierstrassP solution for high degree ODE 
   trying 1st order WeierstrassPPrime solution for high degree ODE 
   trying 1st order JacobiSN solution for high degree ODE 
   trying 1st order ODE linearizable_by_differentiation 
   trying differential order: 1; missing variables 
   trying simple symmetries for implicit equations 
   Successful isolation of dy/dx: 3 solutions were found. Trying to solve each \ 
resulting ODE. 
      *** Sublevel 3 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying homogeneous types: 
      trying homogeneous G 
      trying an integrating factor from the invariance group 
      <- integrating factor successful 
      <- homogeneous successful 
   ------------------- 
   * Tackling next ODE. 
      *** Sublevel 3 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying homogeneous types: 
      trying homogeneous G 
      trying an integrating factor from the invariance group 
      <- integrating factor successful 
      <- homogeneous successful 
   ------------------- 
   * Tackling next ODE. 
      *** Sublevel 3 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying homogeneous types: 
      trying homogeneous G 
      trying an integrating factor from the invariance group 
      <- integrating factor successful 
      <- homogeneous successful
 

Maple step by step

Let’s solve(ddxy(x))3=y(x)2xHighest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivative[ddxy(x)=(y(x)2x2)1/3x,ddxy(x)=(y(x)2x2)1/32xI3(y(x)2x2)1/32x,ddxy(x)=(y(x)2x2)1/32x+I3(y(x)2x2)1/32x]Solve the equationddxy(x)=(y(x)2x2)1/3xSolve the equationddxy(x)=(y(x)2x2)1/32xI3(y(x)2x2)1/32xSolve the equationddxy(x)=(y(x)2x2)1/32x+I3(y(x)2x2)1/32xSet of solutions{workingODE,workingODE,workingODE}
Mathematica. Time used: 0.088 (sec). Leaf size: 152
ode=(D[y[x],x])^3==y[x]^2/x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)1216(3x2/3+2c1)3y(x)1216(18i(3+i)c12x2/327i(3i)c1x4/3+27x2+8c13)y(x)1216(18i(3i)c12x2/3+27i(3+i)c1x4/3+27x2+8c13)y(x)0
Sympy. Time used: 2.293 (sec). Leaf size: 109
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**3 - y(x)**2/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
[3xy2(x)x32y23(x)+3y(x)3=C1, 3xy2(x)x3(1+3i)4y23(x)+3y(x)3=C1, 3xy2(x)x3(13i)4y23(x)+3y(x)3=C1]