2.1.58 Problem 58

Solved using first_order_nonlinear_p_but_separable
Maple
Mathematica
Sympy

Internal problem ID [9041]
Book : First order enumerated odes
Section : section 1
Problem number : 58
Date solved : Friday, April 25, 2025 at 05:35:29 PM
CAS classification : [[_homogeneous, `class G`], _rational]

Solved using first_order_nonlinear_p_but_separable

Time used: 0.671 (sec)

Solve

(ddxy(x))4=1xy(x)3

The ode has the form

(1)(y)nm=f(x)g(y)

Where n=4,m=1,f=1x,g=1y3. Hence the ode is

(y)4=1xy3

Solving for ddxy(x) from (1) gives

ddxy(x)=(fg)1/4ddxy(x)=i(fg)1/4ddxy(x)=(fg)1/4ddxy(x)=i(fg)1/4

To be able to solve as separable ode, we have to now assume that f>0,g>0.

1x>01y3>0

Under the above assumption the differential equations become separable and can be written as

ddxy(x)=f1/4g1/4ddxy(x)=if1/4g1/4ddxy(x)=f1/4g1/4ddxy(x)=if1/4g1/4

Therefore

1g1/4dy=(f1/4)dxig1/4dy=(f1/4)dx1g1/4dy=(f1/4)dxig1/4dy=(f1/4)dx

Replacing f(x),g(y) by their values gives

1(1y3)1/4dy=((1x)1/4)dxi(1y3)1/4dy=((1x)1/4)dx1(1y3)1/4dy=((1x)1/4)dxi(1y3)1/4dy=((1x)1/4)dx

Integrating now gives the following solutions

1(1y3)1/4dy=(1x)1/4dx+c24y(x)4(1y(x)3)3/47=4x(1x)1/43i(1y3)1/4dy=(1x)1/4dx+c24iy(x)4(1y(x)3)3/47=4x(1x)1/431(1y3)1/4dy=(1x)1/4dx+c24y(x)4(1y(x)3)3/47=4x(1x)1/43i(1y3)1/4dy=(1x)1/4dx+c24iy(x)4(1y(x)3)3/47=4x(1x)1/43

Therefore

4y(x)4(1y(x)3)3/47=4x(1x)1/43+c24iy(x)4(1y(x)3)3/47=4x(1x)1/43+c24y(x)4(1y(x)3)3/47=4x(1x)1/43+c24iy(x)4(1y(x)3)3/47=4x(1x)1/43+c2

Summary of solutions found

4iy(x)4(1y(x)3)3/47=4x(1x)1/43+c24iy(x)4(1y(x)3)3/47=4x(1x)1/43+c24y(x)4(1y(x)3)3/47=4x(1x)1/43+c24y(x)4(1y(x)3)3/47=4x(1x)1/43+c2
Maple. Time used: 0.061 (sec). Leaf size: 121
ode:=diff(y(x),x)^4 = 1/x/y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
7x33(x3y)3/4y+c1x9/4x9/4=07x3+3i(x3y)3/4yc1x9/4x9/4=07x3+3i(x3y)3/4yc1x9/4x9/4=07x3+3(x3y)3/4yc1x9/4x9/4=0

Maple trace

Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
trying simple symmetries for implicit equations 
Successful isolation of dy/dx: 4 solutions were found. Trying to solve each res\ 
ulting ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful 
------------------- 
* Tackling next ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful 
------------------- 
* Tackling next ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful 
------------------- 
* Tackling next ODE. 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying homogeneous types: 
   trying homogeneous G 
   1st order, trying the canonical coordinates of the invariance group 
   <- 1st order, canonical coordinates successful 
   <- homogeneous successful
 

Maple step by step

Let’s solve(ddxy(x))4=1xy(x)3Highest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivative[ddxy(x)=(x3y(x))1/4xy(x),ddxy(x)=(x3y(x))1/4xy(x),ddxy(x)=I(x3y(x))1/4xy(x),ddxy(x)=I(x3y(x))1/4xy(x)]Solve the equationddxy(x)=(x3y(x))1/4xy(x)Solve the equationddxy(x)=(x3y(x))1/4xy(x)Solve the equationddxy(x)=I(x3y(x))1/4xy(x)Solve the equationddxy(x)=I(x3y(x))1/4xy(x)Set of solutions{workingODE,workingODE,workingODE,workingODE}
Mathematica. Time used: 6.709 (sec). Leaf size: 129
ode=(D[y[x],x])^4==1/(x*y[x]^3); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)(28x3/43+7c1)4/7227y(x)(7c1283ix3/4)4/7227y(x)(283ix3/4+7c1)4/7227y(x)(28x3/43+7c1)4/7227
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**4 - 1/(x*y(x)**3),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out