2.1.69 problem 69
Internal
problem
ID
[8729]
Book
:
First
order
enumerated
odes
Section
:
section
1
Problem
number
:
69
Date
solved
:
Tuesday, December 17, 2024 at 01:01:44 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
Solve
\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \end{align*}
Solved as first order ode of type ID 1
Time used: 0.654 (sec)
Writing the ode as
\begin{align*} y^{\prime } &= x \,{\mathrm e}^{x +y}+\sin \left (x \right )\tag {1} \end{align*}
And using the substitution \(u={\mathrm e}^{-y}\) then
\begin{align*} u' &= -y^{\prime } {\mathrm e}^{-y} \end{align*}
The above shows that
\begin{align*} y^{\prime } &= -u^{\prime }\left (x \right ) {\mathrm e}^{y}\\ &= -\frac {u^{\prime }\left (x \right )}{u} \end{align*}
Substituting this in (1) gives
\begin{align*} -\frac {u^{\prime }\left (x \right )}{u}&=\frac {x \,{\mathrm e}^{x}}{u}+\sin \left (x \right ) \end{align*}
The above simplifies to
\begin{align*} -u^{\prime }\left (x \right )&=x \,{\mathrm e}^{x}+\sin \left (x \right ) u \left (x \right )\\ u^{\prime }\left (x \right )+\sin \left (x \right ) u \left (x \right )&=-x \,{\mathrm e}^{x}\tag {2} \end{align*}
Now ode (2) is solved for \(u \left (x \right )\) .
In canonical form a linear first order is
\begin{align*} u^{\prime }\left (x \right ) + q(x)u \left (x \right ) &= p(x) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(x) &=\sin \left (x \right )\\ p(x) &=-x \,{\mathrm e}^{x} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,dx}}\\ &= {\mathrm e}^{\int \sin \left (x \right )d x}\\ &= {\mathrm e}^{-\cos \left (x \right )} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu u\right ) &= \left (\mu \right ) \left (-x \,{\mathrm e}^{x}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left (u \,{\mathrm e}^{-\cos \left (x \right )}\right ) &= \left ({\mathrm e}^{-\cos \left (x \right )}\right ) \left (-x \,{\mathrm e}^{x}\right ) \\
\mathrm {d} \left (u \,{\mathrm e}^{-\cos \left (x \right )}\right ) &= \left (-x \,{\mathrm e}^{x} {\mathrm e}^{-\cos \left (x \right )}\right )\, \mathrm {d} x \\
\end{align*}
Integrating gives
\begin{align*} u \,{\mathrm e}^{-\cos \left (x \right )}&= \int {-x \,{\mathrm e}^{x} {\mathrm e}^{-\cos \left (x \right )} \,dx} \\ &=\int -x \,{\mathrm e}^{x} {\mathrm e}^{-\cos \left (x \right )}d x + c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-\cos \left (x \right )}\) gives the final solution
\[ u \left (x \right ) = {\mathrm e}^{\cos \left (x \right )} \left (\int -x \,{\mathrm e}^{x} {\mathrm e}^{-\cos \left (x \right )}d x +c_1 \right ) \]
Substituting the
solution found for \(u \left (x \right )\) in \(u={\mathrm e}^{-y}\) gives
\begin{align*} y&= -\ln \left (u \left (x \right )\right )\\ &= -\ln \left (-\ln \left (\left (-\int x \,{\mathrm e}^{x -\cos \left (x \right )}d x +c_1 \right ) {\mathrm e}^{\cos \left (x \right )}\right )\right )\\ &= -\ln \left (\left (-\int x \,{\mathrm e}^{x -\cos \left (x \right )}d x +c_1 \right ) {\mathrm e}^{\cos \left (x \right )}\right ) \end{align*}
Figure 2.98: Slope field plot
\(y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right )\)
Summary of solutions found
\begin{align*}
y &= -\ln \left (\left (-\int x \,{\mathrm e}^{x -\cos \left (x \right )}d x +c_1 \right ) {\mathrm e}^{\cos \left (x \right )}\right ) \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x \,{\mathrm e}^{x +y \left (x \right )}+\sin \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x \,{\mathrm e}^{x +y \left (x \right )}+\sin \left (x \right ) \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
` , ` -> Computing symmetries using: way = 3
` , ` -> Computing symmetries using: way = 4
` , ` -> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
<- symmetry pattern of the form [0, F(x)*G(y)] successful `
Maple dsolve solution
Solving time : 0.020
(sec)
Leaf size : 29
dsolve ( diff ( y ( x ), x ) = x* exp ( x + y ( x ))+ sin ( x ),
y(x),singsol=all)
\[
y = -\cos \left (x \right )-\ln \left (-c_{1} -\left (\int x \,{\mathrm e}^{x -\cos \left (x \right )}d x \right )\right )
\]
Mathematica DSolve solution
Solving time : 3.151
(sec)
Leaf size : 100
DSolve [{ D [ y [ x ], x ]== x * Exp [ x + y [ x ]]+ Sin [ x ],{}},
y[x],x,IncludeSingularSolutions-> True ]
\[
\text {Solve}\left [\int _1^x\left (-e^{K[1]-\cos (K[1])} K[1]-e^{-\cos (K[1])-y(x)} \sin (K[1])\right )dK[1]+\int _1^{y(x)}-e^{-\cos (x)-K[2]} \left (e^{\cos (x)+K[2]} \int _1^xe^{-\cos (K[1])-K[2]} \sin (K[1])dK[1]-1\right )dK[2]=c_1,y(x)\right ]
\]