2.3.2 problem 2
Internal
problem
ID
[8735]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
2
Date
solved
:
Tuesday, December 17, 2024 at 01:01:49 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} y^{\prime }-t y&=0 \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=0 \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} t^{n} f \left (t \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (t \right )\) . Applying the above property to each term
of the ode gives
\begin{align*} -t y &\xrightarrow {\mathscr {L}} \frac {d}{d s}Y \left (s \right )\\ y^{\prime } &\xrightarrow {\mathscr {L}} s Y \left (s \right )-y \left (0\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
s Y-y \left (0\right )+Y^{\prime } = 0
\]
Replacing \(y \left (0\right ) = 0\) in the above
results in
\[
s Y+Y^{\prime } = 0
\]
The above ode in Y(s) is now solved.
In canonical form a linear first order is
\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(s) &=s\\ p(s) &=0 \end{align*}
The integrating factor \(\mu \) is
\[ \mu = {\mathrm e}^{\int s d s} \]
Therefore the solution is
\[ Y = c_1 \,{\mathrm e}^{-\int s d s} \]
Expanding and simplifying \(Y(s)\) found above
gives
\[
Y = c_1 \,{\mathrm e}^{-\frac {s^{2}}{2}}
\]
Applying inverse Laplace transform on the above gives.
\begin{align*} y = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{-\frac {s^{2}}{2}}, s , t\right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = 0\) and \(y^{\prime }\left (0\right ) = 0\) into the above solution Gives
\[
0 = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{-\frac {s^{2}}{2}}, s , t\right )
\]
Solving for the constant \(c_1\)
from the above equation gives
\begin{align*} c_1 = 0 \end{align*}
Substituting the above back into the solution (1) gives
\[
y = 0
\]
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }-y t =0, y \left (0\right )=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=y t \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=t \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y}d t =\int t d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=\frac {t^{2}}{2}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{\frac {t^{2}}{2}+\mathit {C1}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0={\mathrm e}^{\mathit {C1}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\left (\right ) \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful `
Maple dsolve solution
Solving time : 0.032
(sec)
Leaf size : 5
dsolve ([ diff ( y ( t ), t )- y ( t )* t = 0,
op ([ y (0) = 0])],
y(t),method=laplace)
\[
y = 0
\]
Mathematica DSolve solution
Solving time : 0.001
(sec)
Leaf size : 6
DSolve [{ D [ y [ t ], t ]- t * y [ t ]==0, y [0]==0},
y[t],t,IncludeSingularSolutions-> True ]
\[
y(t)\to 0
\]