2.3.13 problem 13
Internal
problem
ID
[8746]
Book
:
First
order
enumerated
odes
Section
:
section
3.
First
order
odes
solved
using
Laplace
method
Problem
number
:
13
Date
solved
:
Tuesday, December 17, 2024 at 01:01:57 PM
CAS
classification
:
[_separable]
Solve
\begin{align*} y^{\prime }+\left (a t +b t \right ) y&=0 \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=0 \end{align*}
We will now apply Laplace transform to each term in the ode. Since this is time varying, the
following Laplace transform property will be used
\begin{align*} t^{n} f \left (t \right ) &\xrightarrow {\mathscr {L}} (-1)^n \frac {d^n}{ds^n} F(s) \end{align*}
Where in the above \(F(s)\) is the laplace transform of \(f \left (t \right )\) . Applying the above property to each term
of the ode gives
\begin{align*} \left (a t +b t \right ) y &\xrightarrow {\mathscr {L}} -a \left (\frac {d}{d s}Y \left (s \right )\right )-b \left (\frac {d}{d s}Y \left (s \right )\right )\\ y^{\prime } &\xrightarrow {\mathscr {L}} Y \left (s \right ) s -y \left (0\right ) \end{align*}
Collecting all the terms above, the ode in Laplace domain becomes
\[
Y s -y \left (0\right )-a Y^{\prime }-b Y^{\prime } = 0
\]
Replacing \(y \left (0\right ) = 0\) in the above
results in
\[
Y s -a Y^{\prime }-b Y^{\prime } = 0
\]
The above ode in Y(s) is now solved.
In canonical form a linear first order is
\begin{align*} Y^{\prime } + q(s)Y &= p(s) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(s) &=-\frac {s}{a +b}\\ p(s) &=0 \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,ds}}\\ &= {\mathrm e}^{\int -\frac {s}{a +b}d s}\\ &= {\mathrm e}^{-\frac {s^{2}}{2 a +2 b}} \end{align*}
The ode becomes
\begin{align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \mu Y &= 0 \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}s}} \left (Y \,{\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}\right ) &= 0 \end{align*}
Integrating gives
\begin{align*} Y \,{\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}&= \int {0 \,ds} + c_1 \\ &=c_1 \end{align*}
Dividing throughout by the integrating factor \({\mathrm e}^{-\frac {s^{2}}{2 a +2 b}}\) gives the final solution
\[ Y = c_1 \,{\mathrm e}^{\frac {s^{2}}{2 a +2 b}} \]
Applying inverse
Laplace transform on the above gives.
\begin{align*} y = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{\frac {s^{2}}{2 a +2 b}}, s , t\right )\tag {1} \end{align*}
Substituting initial conditions \(y \left (0\right ) = 0\) and \(y^{\prime }\left (0\right ) = 0\) into the above solution Gives
\[
0 = c_1 \mathcal {L}^{-1}\left ({\mathrm e}^{\frac {s^{2}}{2 a +2 b}}, s , t\right )
\]
Solving for the constant \(c_1\)
from the above equation gives
\begin{align*} c_1 = 0 \end{align*}
Substituting the above back into the solution (1) gives
\[
y = 0
\]
Figure 2.104: Solution plot
\(y = 0\)
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }+\left (a t +b t \right ) y=0, y \left (0\right )=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\left (a t +b t \right ) y \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=-a t -b t \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {y^{\prime }}{y}d t =\int \left (-a t -b t \right )d t +\mathit {C1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=-\frac {t^{2} \left (a +b \right )}{2}+\mathit {C1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{-\frac {1}{2} t^{2} a -\frac {1}{2} t^{2} b +\mathit {C1}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=0 \\ {} & {} & 0={\mathrm e}^{\mathit {C1}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} \textit {\_C1} \\ {} & {} & \mathit {C1} =\left (\right ) \\ \bullet & {} & \textrm {Solution does not satisfy initial condition}\hspace {3pt} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful `
Maple dsolve solution
Solving time : 0.032
(sec)
Leaf size : 5
dsolve ([ diff ( y ( t ), t )+( a * t + b * t )* y ( t ) = 0,
op ([ y (0) = 0])],
y(t),method=laplace)
\[
y = 0
\]
Mathematica DSolve solution
Solving time : 0.001
(sec)
Leaf size : 6
DSolve [{ D [ y [ t ], t ]+( a * t + b * t )* y [ t ]==0, y [0]==0},
y[t],t,IncludeSingularSolutions-> True ]
\[
y(t)\to 0
\]