10.23 problem Exercise 35.23(b), page 504

10.23.1 Solving as second order integrable as is ode
10.23.2 Solving as second order nonlinear solved by mainardi lioville method ode
10.23.3 Solving as type second_order_integrable_as_is (not using ABC version)

Internal problem ID [4673]
Internal file name [OUTPUT/4166_Sunday_June_05_2022_12_32_06_PM_94626859/index.tex]

Book: Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section: Chapter 8. Special second order equations. Lesson 35. Independent variable x absent
Problem number: Exercise 35.23(b), page 504.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_nonlinear_solved_by_mainardi_lioville_method"

Maple gives the following as the ode type

[[_2nd_order, _exact, _nonlinear], _Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

\[ \boxed {x y y^{\prime \prime }+x {y^{\prime }}^{2}-y y^{\prime }=0} \]

10.23.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (x y y^{\prime \prime }+\left (x y^{\prime }-y\right ) y^{\prime }\right )d x &= 0 \\ x y y^{\prime }-y^{2} = c_{1} \end {align*}

Which is now solved for \(y\). In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {y^{2}+c_{1}}{x y} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(y)=\frac {y^{2}+c_{1}}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {y^{2}+c_{1}}{y}} \,dy &= \frac {1}{x} \,d x \\ \int { \frac {1}{\frac {y^{2}+c_{1}}{y}} \,dy} &= \int {\frac {1}{x} \,d x} \\ \frac {\ln \left (y^{2}+c_{1} \right )}{2}&=\ln \left (x \right )+c_{2} \\ \end{align*} Raising both side to exponential gives \begin {align*} \sqrt {y^{2}+c_{1}} &= {\mathrm e}^{\ln \left (x \right )+c_{2}} \end {align*}

Which simplifies to \begin {align*} \sqrt {y^{2}+c_{1}} &= c_{3} x \end {align*}

Which simplifies to \[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \] The solution is \[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \sqrt {y^{2}+c_{1}} &= c_{3} {\mathrm e}^{c_{2}} x \\ \end{align*}

Verification of solutions

\[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \] Verified OK.

10.23.2 Solving as second order nonlinear solved by mainardi lioville method ode

The ode has the Liouville form given by \begin {align*} y^{\prime \prime }+ f(x) y^{\prime } + g(y) {y^{\prime }}^{2} &= 0 \tag {1A} \end {align*}

Where in this problem \begin {align*} f(x) &= -\frac {1}{x}\\ g(y) &= \frac {1}{y} \end {align*}

Dividing through by \(y^{\prime }\) then Eq (1A) becomes \begin {align*} \frac {y^{\prime \prime }}{y^{\prime }}+ f + g y^{\prime } &= 0 \tag {2A} \end {align*}

But the first term in Eq (2A) can be written as \begin {align*} \frac {y^{\prime \prime }}{y^{\prime }}&= \frac {d}{dx} \ln \left ( y^{\prime } \right )\tag {3A} \end {align*}

And the last term in Eq (2A) can be written as \begin {align*} g \frac {dy}{dx}&= \left ( \frac {d}{dy} \int g d y\right ) \frac {dy}{dx} \\ &= \frac {d}{dx} \int g d y\tag {4A} \end {align*}

Substituting (3A,4A) back into (2A) gives \begin {align*} \frac {d}{dx} \ln \left ( y^{\prime } \right ) + \frac {d}{dx} \int g d y &= -f \tag {5A} \end {align*}

Integrating the above w.r.t. \(x\) gives \begin {align*} \ln \left ( y^{\prime } \right ) + \int g d y &= - \int f d x + c_{1} \end {align*}

Where \(c_1\) is arbitrary constant. Taking the exponential of the above gives \begin {align*} y^{\prime } &= c_{2} e^{\int -g d y}\, e^{\int -f d x}\tag {6A} \end {align*}

Where \(c_{2}\) is a new arbitrary constant. But since \(g=\frac {1}{y}\) and \(f=-\frac {1}{x}\), then \begin {align*} \int -g d y &= \int -\frac {1}{y}d y\\ &= -\ln \left (y\right )\\ \int -f d x &= \int \frac {1}{x}d x\\ &= \ln \left (x \right ) \end {align*}

Substituting the above into Eq(6A) gives \[ y^{\prime } = \frac {c_{2} x}{y} \] Which is now solved as first order separable ode. In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {c_{2} x}{y} \end {align*}

Where \(f(x)=c_{2} x\) and \(g(y)=\frac {1}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {1}{y}} \,dy &= c_{2} x \,d x \\ \int { \frac {1}{\frac {1}{y}} \,dy} &= \int {c_{2} x \,d x} \\ \frac {y^{2}}{2}&=\frac {c_{2} x^{2}}{2}+c_{3} \\ \end{align*} The solution is \[ \frac {y^{2}}{2}-\frac {c_{2} x^{2}}{2}-c_{3} = 0 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {y^{2}}{2}-\frac {c_{2} x^{2}}{2}-c_{3} &= 0 \\ \end{align*}

Verification of solutions

\[ \frac {y^{2}}{2}-\frac {c_{2} x^{2}}{2}-c_{3} = 0 \] Verified OK.

10.23.3 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as \[ x y y^{\prime \prime }+\left (x y^{\prime }-y\right ) y^{\prime } = 0 \] Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (x y y^{\prime \prime }+\left (x y^{\prime }-y\right ) y^{\prime }\right )d x &= 0 \\ x y y^{\prime }-y^{2} = c_{1} \end {align*}

Which is now solved for \(y\). In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {y^{2}+c_{1}}{x y} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(y)=\frac {y^{2}+c_{1}}{y}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {y^{2}+c_{1}}{y}} \,dy &= \frac {1}{x} \,d x \\ \int { \frac {1}{\frac {y^{2}+c_{1}}{y}} \,dy} &= \int {\frac {1}{x} \,d x} \\ \frac {\ln \left (y^{2}+c_{1} \right )}{2}&=\ln \left (x \right )+c_{2} \\ \end{align*} Raising both side to exponential gives \begin {align*} \sqrt {y^{2}+c_{1}} &= {\mathrm e}^{\ln \left (x \right )+c_{2}} \end {align*}

Which simplifies to \begin {align*} \sqrt {y^{2}+c_{1}} &= c_{3} x \end {align*}

Which simplifies to \[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \] The solution is \[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \sqrt {y^{2}+c_{1}} &= c_{3} {\mathrm e}^{c_{2}} x \\ \end{align*}

Verification of solutions

\[ \sqrt {y^{2}+c_{1}} = c_{3} {\mathrm e}^{c_{2}} x \] Verified OK.

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying 2nd order Liouville 
<- 2nd_order Liouville successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 35

dsolve(x*y(x)*diff(y(x),x$2)+x*(diff(y(x),x))^2-y(x)*diff(y(x),x)=0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= 0 \\ y \left (x \right ) &= \sqrt {c_{1} x^{2}+2 c_{2}} \\ y \left (x \right ) &= -\sqrt {c_{1} x^{2}+2 c_{2}} \\ \end{align*}

Solution by Mathematica

Time used: 0.241 (sec). Leaf size: 18

DSolve[x*y[x]*y''[x]+x*(y'[x])^2-y[x]*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_2 \sqrt {x^2+c_1} \]