2.24 problem 24

2.24.1 Solving as homogeneous ode
2.24.2 Maple step by step solution

Internal problem ID [5772]
Internal file name [OUTPUT/5020_Sunday_June_05_2022_03_17_39_PM_50656827/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number: 24.
ODE order: 1.
ODE degree: 2.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[[_homogeneous, `class A`], _dAlembert]

\[ \boxed {\left (y^{\prime } x +y\right )^{2}-y^{\prime } y^{2}=0} \]

2.24.1 Solving as homogeneous ode

Solving for \(y^{\prime }\) gives \begin {align*} y^{\prime }&=\frac {\left (-2 x +y+\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}}\tag {1} \\ y^{\prime }&=\frac {\left (-2 x +y-\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}}\tag {2} \end {align*}

Now ODE (1) is solved In canonical form, the ODE is \begin {align*} y' &= F(x,y)\\ &= \frac {\left (-2 x +y +\sqrt {-4 x y +y^{2}}\right ) y}{2 x^{2}}\tag {1} \end {align*}

An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if \[ f(t^n x, t^n y)= t^n f(x,y) \] In this case, it can be seen that both \(M=\left (-2 x +y +\sqrt {-4 x y +y^{2}}\right ) y\) and \(N=2 x^{2}\) are both homogeneous and of the same order \(n=2\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence \[ \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u \] Applying the transformation \(y=ux\) to the above ODE in (1) gives \begin {align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u &= \frac {u \left (\sqrt {u \left (u -4\right )}+u -2\right )}{2}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= \frac {\frac {u \left (x \right ) \left (\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+u \left (x \right )-2\right )}{2}-u \left (x \right )}{x} \end {align*}

Or \[ u^{\prime }\left (x \right )-\frac {\frac {u \left (x \right ) \left (\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+u \left (x \right )-2\right )}{2}-u \left (x \right )}{x} = 0 \] Or \[ 2 u^{\prime }\left (x \right ) x -u \left (x \right )^{2}-u \left (x \right ) \sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+4 u \left (x \right ) = 0 \] Which is now solved as separable in \(u \left (x \right )\). Which is now solved in \(u \left (x \right )\). In canonical form the ODE is \begin {align*} u' &= F(x,u)\\ &= f( x) g(u)\\ &= \frac {u \left (\sqrt {u \left (u -4\right )}+u -4\right )}{2 x} \end {align*}

Where \(f(x)=\frac {1}{2 x}\) and \(g(u)=\left (\sqrt {u \left (u -4\right )}+u -4\right ) u\). Integrating both sides gives \begin{align*} \frac {1}{\left (\sqrt {u \left (u -4\right )}+u -4\right ) u} \,du &= \frac {1}{2 x} \,d x \\ \int { \frac {1}{\left (\sqrt {u \left (u -4\right )}+u -4\right ) u} \,du} &= \int {\frac {1}{2 x} \,d x} \\ \frac {\ln \left (\frac {u -2+\sqrt {u^{2}-4 u}}{u}\right )}{4}&=\frac {\ln \left (x \right )}{2}+c_{2} \\ \end{align*} Raising both side to exponential gives \begin {align*} {\left (\frac {u -2+\sqrt {u^{2}-4 u}}{u}\right )}^{\frac {1}{4}} &= {\mathrm e}^{\frac {\ln \left (x \right )}{2}+c_{2}} \end {align*}

Which simplifies to \begin {align*} \left (\frac {\sqrt {u \left (u -4\right )}+u -2}{u}\right )^{\frac {1}{4}} &= c_{3} \sqrt {x} \end {align*}

Which simplifies to \[ \left (\frac {\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+u \left (x \right )-2}{u \left (x \right )}\right )^{\frac {1}{4}} = c_{3} {\mathrm e}^{c_{2}} \sqrt {x} \] The solution is \[ \left (\frac {\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+u \left (x \right )-2}{u \left (x \right )}\right )^{\frac {1}{4}} = c_{3} {\mathrm e}^{c_{2}} \sqrt {x} \] Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac {y}{x}\) which results in the solution \[ \left (\frac {\left (\sqrt {\frac {y \left (\frac {y}{x}-4\right )}{x}}+\frac {y}{x}-2\right ) x}{y}\right )^{\frac {1}{4}} = c_{3} {\mathrm e}^{c_{2}} \sqrt {x} \] Now ODE (2) is solved In canonical form, the ODE is \begin {align*} y' &= F(x,y)\\ &= \frac {\left (-2 x +y -\sqrt {-4 x y +y^{2}}\right ) y}{2 x^{2}}\tag {1} \end {align*}

An ode of the form \(y' = \frac {M(x,y)}{N(x,y)}\) is called homogeneous if the functions \(M(x,y)\) and \(N(x,y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x,y)\) is homogeneous of order \(n\) if \[ f(t^n x, t^n y)= t^n f(x,y) \] In this case, it can be seen that both \(M=-\left (2 x -y +\sqrt {-4 x y +y^{2}}\right ) y\) and \(N=2 x^{2}\) are both homogeneous and of the same order \(n=2\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac {y}{x}\), or \(y=ux\). Hence \[ \frac { \mathop {\mathrm {d}y}}{\mathop {\mathrm {d}x}}= \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u \] Applying the transformation \(y=ux\) to the above ODE in (1) gives \begin {align*} \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}}x + u &= -\frac {u \left (\sqrt {u \left (u -4\right )}-u +2\right )}{2}\\ \frac { \mathop {\mathrm {d}u}}{\mathop {\mathrm {d}x}} &= \frac {-\frac {u \left (x \right ) \left (\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}-u \left (x \right )+2\right )}{2}-u \left (x \right )}{x} \end {align*}

Or \[ u^{\prime }\left (x \right )-\frac {-\frac {u \left (x \right ) \left (\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}-u \left (x \right )+2\right )}{2}-u \left (x \right )}{x} = 0 \] Or \[ 2 u^{\prime }\left (x \right ) x -u \left (x \right )^{2}+u \left (x \right ) \sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}+4 u \left (x \right ) = 0 \] Which is now solved as separable in \(u \left (x \right )\). Which is now solved in \(u \left (x \right )\). In canonical form the ODE is \begin {align*} u' &= F(x,u)\\ &= f( x) g(u)\\ &= \frac {u \left (-\sqrt {u \left (u -4\right )}+u -4\right )}{2 x} \end {align*}

Where \(f(x)=\frac {1}{2 x}\) and \(g(u)=u \left (-\sqrt {u \left (u -4\right )}+u -4\right )\). Integrating both sides gives \begin{align*} \frac {1}{u \left (-\sqrt {u \left (u -4\right )}+u -4\right )} \,du &= \frac {1}{2 x} \,d x \\ \int { \frac {1}{u \left (-\sqrt {u \left (u -4\right )}+u -4\right )} \,du} &= \int {\frac {1}{2 x} \,d x} \\ \frac {\ln \left (\frac {\sqrt {u^{2}-4 u}+2-u}{u}\right )}{4}&=\frac {\ln \left (x \right )}{2}+c_{5} \\ \end{align*} Raising both side to exponential gives \begin {align*} {\left (\frac {\sqrt {u^{2}-4 u}+2-u}{u}\right )}^{\frac {1}{4}} &= {\mathrm e}^{\frac {\ln \left (x \right )}{2}+c_{5}} \end {align*}

Which simplifies to \begin {align*} \left (\frac {\sqrt {u \left (u -4\right )}-u +2}{u}\right )^{\frac {1}{4}} &= c_{6} \sqrt {x} \end {align*}

Which simplifies to \[ \left (\frac {\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}-u \left (x \right )+2}{u \left (x \right )}\right )^{\frac {1}{4}} = c_{6} \sqrt {x}\, {\mathrm e}^{c_{5}} \] The solution is \[ \left (\frac {\sqrt {u \left (x \right ) \left (u \left (x \right )-4\right )}-u \left (x \right )+2}{u \left (x \right )}\right )^{\frac {1}{4}} = c_{6} \sqrt {x}\, {\mathrm e}^{c_{5}} \] Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac {y}{x}\) which results in the solution \[ \left (\frac {\left (\sqrt {\frac {y \left (\frac {y}{x}-4\right )}{x}}-\frac {y}{x}+2\right ) x}{y}\right )^{\frac {1}{4}} = c_{6} \sqrt {x}\, {\mathrm e}^{c_{5}} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} {\left (\frac {\sqrt {\frac {y^{2}-4 y x}{x^{2}}}\, x +y-2 x}{y}\right )}^{\frac {1}{4}} &= c_{3} {\mathrm e}^{c_{2}} \sqrt {x} \\ \tag{2} {\left (\frac {\sqrt {\frac {y^{2}-4 y x}{x^{2}}}\, x +2 x -y}{y}\right )}^{\frac {1}{4}} &= c_{6} \sqrt {x}\, {\mathrm e}^{c_{5}} \\ \end{align*}

Verification of solutions

\[ {\left (\frac {\sqrt {\frac {y^{2}-4 y x}{x^{2}}}\, x +y-2 x}{y}\right )}^{\frac {1}{4}} = c_{3} {\mathrm e}^{c_{2}} \sqrt {x} \] Verified OK. {0 < x}

\[ {\left (\frac {\sqrt {\frac {y^{2}-4 y x}{x^{2}}}\, x +2 x -y}{y}\right )}^{\frac {1}{4}} = c_{6} \sqrt {x}\, {\mathrm e}^{c_{5}} \] Verified OK. {0 < x}

2.24.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (y^{\prime } x +y\right )^{2}-y^{\prime } y^{2}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=\frac {\left (-2 x +y-\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}}, y^{\prime }=\frac {\left (-2 x +y+\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {\left (-2 x +y-\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {\left (-2 x +y+\sqrt {y^{2}-4 y x}\right ) y}{2 x^{2}} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   -> Solving 1st order ODE of high degree, 1st attempt 
   trying 1st order WeierstrassP solution for high degree ODE 
   trying 1st order WeierstrassPPrime solution for high degree ODE 
   trying 1st order JacobiSN solution for high degree ODE 
   trying 1st order ODE linearizable_by_differentiation 
   trying differential order: 1; missing variables 
   trying simple symmetries for implicit equations 
   <- symmetries for implicit equations successful`
 

Solution by Maple

Time used: 0.078 (sec). Leaf size: 124

dsolve((x*diff(y(x),x)+y(x))^2=y(x)^2*diff(y(x),x),y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= 4 x \\ y \left (x \right ) &= 0 \\ y \left (x \right ) &= -\frac {2 c_{1}^{2} \left (-\sqrt {2}\, c_{1} +x \right )}{-2 c_{1}^{2}+x^{2}} \\ y \left (x \right ) &= -\frac {2 c_{1}^{2} \left (\sqrt {2}\, c_{1} +x \right )}{-2 c_{1}^{2}+x^{2}} \\ y \left (x \right ) &= \frac {c_{1}^{3} \sqrt {2}-2 c_{1}^{2} x}{-2 c_{1}^{2}+4 x^{2}} \\ y \left (x \right ) &= \frac {c_{1}^{2} \left (\sqrt {2}\, c_{1} +2 x \right )}{2 c_{1}^{2}-4 x^{2}} \\ \end{align*}

Solution by Mathematica

Time used: 0.501 (sec). Leaf size: 62

DSolve[(x*y'[x]+y[x])^2==y[x]^2*y'[x],y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {4 e^{-2 c_1}}{2+e^{2 c_1} x} \\ y(x)\to -\frac {e^{-2 c_1}}{2+4 e^{2 c_1} x} \\ y(x)\to 0 \\ y(x)\to 4 x \\ \end{align*}