2.55 problem 51

2.55.1 Solving as isobaric ode
2.55.2 Maple step by step solution

Internal problem ID [5803]
Internal file name [OUTPUT/5051_Sunday_June_05_2022_03_19_15_PM_17080372/index.tex]

Book: Ordinary differential equations and calculus of variations. Makarets and Reshetnyak. Wold Scientific. Singapore. 1995
Section: Chapter 1. First order differential equations. Section 1.2 Homogeneous equations problems. page 12
Problem number: 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[[_homogeneous, `class G`], _rational]

\[ \boxed {y \left (y^{2} x^{2}+1\right )+\left (y^{2} x^{2}-1\right ) x y^{\prime }=0} \]

2.55.1 Solving as isobaric ode

Solving for \(y'\) gives \begin{align*} \tag{1} y' &= -\frac {y \left (y^{2} x^{2}+1\right )}{\left (y^{2} x^{2}-1\right ) x} \\ \end{align*} Each of the above ode’s is now solved

Solving ode 1

An ode \(y^{\prime }=f(x,y)\) is isobaric if \[ f(t x, t^m y) = t^{m-1} f(x,y)\tag {1} \] Where here \[ f(x,y) = -\frac {y \left (y^{2} x^{2}+1\right )}{\left (y^{2} x^{2}-1\right ) x}\tag {2} \] \(m\) is the order of isobaric. Substituting (2) into (1) and solving for \(m\) gives \[ m = -1 \] Since the ode is isobaric of order \(m=-1\), then the substitution \begin {align*} y&=x u^m \\ &=\frac {u}{x} \end {align*}

Converts the ODE to a separable in \(u \left (x \right )\). Performing this substitution gives \[ \frac {u^{\prime }\left (x \right ) x -u \left (x \right )}{x^{2}} = -\frac {u \left (x \right ) \left (u \left (x \right )^{2}+1\right )}{x^{2} \left (u \left (x \right )^{2}-1\right )} \] Or \[ u^{\prime }\left (x \right ) = -\frac {2 u \left (x \right )}{x \left (u \left (x \right )^{2}-1\right )} \] Which is now solved as separable in \(u \left (x \right )\). In canonical form the ODE is \begin {align*} u' &= F(x,u)\\ &= f( x) g(u)\\ &= -\frac {2 u}{x \left (u^{2}-1\right )} \end {align*}

Where \(f(x)=-\frac {2}{x}\) and \(g(u)=\frac {u}{u^{2}-1}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {u}{u^{2}-1}} \,du &= -\frac {2}{x} \,d x \\ \int { \frac {1}{\frac {u}{u^{2}-1}} \,du} &= \int {-\frac {2}{x} \,d x} \\ \frac {u^{2}}{2}-\ln \left (u \right )&=-2 \ln \left (x \right )+c_{1} \\ \end{align*} The solution is \[ \frac {u \left (x \right )^{2}}{2}-\ln \left (u \left (x \right )\right )+2 \ln \left (x \right )-c_{1} = 0 \] Now \(u \left (x \right )\) in the above solution is replaced back by \(y\) using \(u=\frac {y}{\frac {1}{x}}\) which results in the solution \[ \frac {y^{2} x^{2}}{2}-\ln \left (x y\right )+2 \ln \left (x \right )-c_{1} = 0 \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} \frac {y^{2} x^{2}}{2}-\ln \left (x y\right )+2 \ln \left (x \right )-c_{1} &= 0 \\ \end{align*}

Figure 96: Slope field plot

Verification of solutions

\[ \frac {y^{2} x^{2}}{2}-\ln \left (x y\right )+2 \ln \left (x \right )-c_{1} = 0 \] Verified OK.

2.55.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (y^{2} x^{2}+1\right )+\left (y^{2} x^{2}-1\right ) x y^{\prime }=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {y \left (y^{2} x^{2}+1\right )}{\left (y^{2} x^{2}-1\right ) x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying homogeneous G 
<- homogeneous successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 33

dsolve(y(x)*(x^2*y(x)^2+1)+(x^2*y(x)^2-1)*x*diff(y(x),x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {{\mathrm e}^{-2 c_{1}} x}{\sqrt {-\frac {x^{4} {\mathrm e}^{-4 c_{1}}}{\operatorname {LambertW}\left (-x^{4} {\mathrm e}^{-4 c_{1}}\right )}}} \]

Solution by Mathematica

Time used: 31.376 (sec). Leaf size: 60

DSolve[y[x]*(x^2*y[x]^2+1)+(x^2*y[x]^2-1)*x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -\frac {i \sqrt {W\left (-e^{-2 c_1} x^4\right )}}{x} \\ y(x)\to \frac {i \sqrt {W\left (-e^{-2 c_1} x^4\right )}}{x} \\ y(x)\to 0 \\ \end{align*}