35.26 problem 1060

35.26.1 Maple step by step solution

Internal problem ID [4280]
Internal file name [OUTPUT/3773_Sunday_June_05_2022_10_50_52_AM_50794920/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 35
Problem number: 1060.
ODE order: 1.
ODE degree: 3.

The type(s) of ODE detected by this program : "exact", "linear", "quadrature", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x=0} \] The ode \begin {align*} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x = 0 \end {align*}

is factored to \begin {align*} \left (y^{\prime }-1\right ) \left (y^{\prime }-x \right ) \left (-x y^{\prime }+y\right ) = 0 \end {align*}

Which gives the following equations \begin {align*} y^{\prime }-1 = 0\tag {1} \\ y^{\prime }-x = 0\tag {2} \\ -x y^{\prime }+y = 0\tag {3} \\ \end {align*}

Each of the above equations is now solved.

Solving ODE (1) Integrating both sides gives \begin {align*} y &= \int { 1\,\mathop {\mathrm {d}x}}\\ &= x +c_{1} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= x +c_{1} \\ \end{align*}

Verification of solutions

\[ y = x +c_{1} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= x +c_{1} \\ \end{align*}

Verification of solutions

\[ y = x +c_{1} \] Verified OK.

Solving ODE (2) Integrating both sides gives \begin {align*} y &= \int { x\,\mathop {\mathrm {d}x}}\\ &= \frac {x^{2}}{2}+c_{2} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {x^{2}}{2}+c_{2} \\ \end{align*}

Verification of solutions

\[ y = \frac {x^{2}}{2}+c_{2} \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {x^{2}}{2}+c_{2} \\ \end{align*}

Verification of solutions

\[ y = \frac {x^{2}}{2}+c_{2} \] Verified OK.

Solving ODE (3) In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {y}{x} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(y)=y\). Integrating both sides gives \begin {align*} \frac {1}{y} \,dy &= \frac {1}{x} \,d x\\ \int { \frac {1}{y} \,dy} &= \int {\frac {1}{x} \,d x}\\ \ln \left (y \right )&=\ln \left (x \right )+c_{3}\\ y&={\mathrm e}^{\ln \left (x \right )+c_{3}}\\ &=c_{3} x \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{3} x \\ \end{align*}

Verification of solutions

\[ y = c_{3} x \] Verified OK.

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{3} x \\ \end{align*}

Verification of solutions

\[ y = c_{3} x \] Verified OK.

35.26.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+y x \right ) y^{\prime }-y x =0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [y^{\prime }=1, y^{\prime }=x , y^{\prime }=\frac {y}{x}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int 1d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=x +c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=x +c_{1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=x \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int y^{\prime }d x =\int x d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y=\frac {x^{2}}{2}+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=\frac {x^{2}}{2}+c_{1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} y^{\prime }=\frac {y}{x} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=\frac {1}{x} \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y}d x =\int \frac {1}{x}d x +c_{1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=\ln \left (x \right )+c_{1} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{c_{1}} x \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{y={\mathrm e}^{c_{1}} x , y=x +c_{1} , y=\frac {x^{2}}{2}+c_{1} \right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful 
Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful 
Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
<- quadrature successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 23

dsolve(x*diff(y(x),x)^3-(x+x^2+y(x))*diff(y(x),x)^2+(x^2+y(x)+x*y(x))*diff(y(x),x)-x*y(x) = 0,y(x), singsol=all)
 

\begin{align*} y \left (x \right ) &= c_{1} x \\ y \left (x \right ) &= x +c_{1} \\ y \left (x \right ) &= \frac {x^{2}}{2}+c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.044 (sec). Leaf size: 36

DSolve[x (y'[x])^3 - (x+x^2+y[x])(y'[x])^2 + (x^2+y[x]+x y[x]) y'[x]-x y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to c_1 x \\ y(x)\to x+c_1 \\ y(x)\to \frac {x^2}{2}+c_1 \\ y(x)\to 0 \\ \end{align*}