3.21 problem 75

3.21.1 Solving as riccati ode
3.21.2 Maple step by step solution

Internal problem ID [3339]
Internal file name [OUTPUT/2831_Sunday_June_05_2022_08_41_19_AM_55602258/index.tex]

Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section: Various 3
Problem number: 75.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-g \left (x \right ) y-h \left (x \right ) y^{2}=f \left (x \right )} \]

3.21.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f \left (x \right )+g \left (x \right ) y +h \left (x \right ) y^{2} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = f \left (x \right )+g \left (x \right ) y +h \left (x \right ) y^{2} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=f \left (x \right )\), \(f_1(x)=g \left (x \right )\) and \(f_2(x)=h \left (x \right )\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{h \left (x \right ) u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=h^{\prime }\left (x \right )\\ f_1 f_2 &=g \left (x \right ) h \left (x \right )\\ f_2^2 f_0 &=f \left (x \right ) h \left (x \right )^{2} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} h \left (x \right ) u^{\prime \prime }\left (x \right )-\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) u^{\prime }\left (x \right )+f \left (x \right ) h \left (x \right )^{2} u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {d}{d x}\operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] Using the above in (1) gives the solution \[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{h \left (x \right ) \operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{h \left (x \right ) \operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{h \left (x \right ) \operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \\ \end{align*}

Verification of solutions

\[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{h \left (x \right ) \operatorname {DESol}\left (\left \{f \left (x \right ) h \left (x \right ) \textit {\_Y} \left (x \right )-\frac {\left (g \left (x \right ) h \left (x \right )+h^{\prime }\left (x \right )\right ) \textit {\_Y}^{\prime }\left (x \right )}{h \left (x \right )}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Verified OK.

3.21.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-g \left (x \right ) y-h \left (x \right ) y^{2}=f \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=f \left (x \right )+g \left (x \right ) y+h \left (x \right ) y^{2} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (g(x)*h(x)+diff(h(x), x))*(diff(y(x), x))/h(x)-h(x)*f(x)*y(x), y(x)` 
      Methods for second order ODEs: 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(h(x)*y(x)^2+y(x)+g(x)*y(x)*x+x^2*f(x))/x, y(x), explicit`      *** Sublevel 2 ** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6`
 

Solution by Maple

dsolve(diff(y(x),x) = f(x)+g(x)*y(x)+h(x)*y(x)^2,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==f[x]+g[x] y[x]+h[x] y[x]^2,y[x],x,IncludeSingularSolutions -> True]
 

Not solved