2.11 problem 11

2.11.1 Maple step by step solution
2.11.2 Maple trace
2.11.3 Maple dsolve solution
2.11.4 Mathematica DSolve solution

Internal problem ID [7795]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 11
Date solved : Tuesday, October 22, 2024 at 02:29:57 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} y^{\prime \prime }-a x y^{\prime }-b x y-c x&=0 \end{align*}

2.11.1 Maple step by step solution

2.11.2 Maple trace
Methods for second order ODEs:
 
2.11.3 Maple dsolve solution

Solving time : 0.007 (sec)
Leaf size : 86

dsolve(diff(diff(y(x),x),x)-a*x*diff(y(x),x)-b*x*y(x)-c*x = 0, 
       y(x),singsol=all)
 
\[ y = \frac {{\mathrm e}^{-\frac {b x}{a}} \operatorname {KummerM}\left (-\frac {b^{2}}{2 a^{3}}, \frac {1}{2}, \frac {\left (x \,a^{2}+2 b \right )^{2}}{2 a^{3}}\right ) c_2 b +{\mathrm e}^{-\frac {b x}{a}} \operatorname {KummerU}\left (-\frac {b^{2}}{2 a^{3}}, \frac {1}{2}, \frac {\left (x \,a^{2}+2 b \right )^{2}}{2 a^{3}}\right ) c_1 b -c}{b} \]
2.11.4 Mathematica DSolve solution

Solving time : 5.112 (sec)
Leaf size : 565

DSolve[{D[y[x],{x,2}]-a*x*D[y[x],x]-b*x*y[x]-c*x==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-\frac {b x}{a}} \left (\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \int _1^x\frac {a^4 c e^{\frac {b K[1]}{a}} \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) K[1]}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[1] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[1] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[1] a^2+2 b\right )\right )}dK[1]+\operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right ) \int _1^x-\frac {a^4 c e^{\frac {b K[2]}{a}} \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) K[2]}{b^2 \left (\sqrt {2} \operatorname {HermiteH}\left (\frac {b^2}{a^3}-1,\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) a^{3/2}+\operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {K[2] a^2+2 b}{\sqrt {2} a^{3/2}}\right ) \operatorname {Hypergeometric1F1}\left (1-\frac {b^2}{2 a^3},\frac {3}{2},\frac {\left (K[2] a^2+2 b\right )^2}{2 a^3}\right ) \left (K[2] a^2+2 b\right )\right )}dK[2]+c_2 \operatorname {Hypergeometric1F1}\left (-\frac {b^2}{2 a^3},\frac {1}{2},\frac {\left (x a^2+2 b\right )^2}{2 a^3}\right )+c_1 \operatorname {HermiteH}\left (\frac {b^2}{a^3},\frac {x a^2+2 b}{\sqrt {2} a^{3/2}}\right )\right ) \]