2.2.43 problem 42

Maple step by step solution
Maple trace
Maple dsolve solution
Mathematica DSolve solution

Internal problem ID [8523]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 42
Date solved : Thursday, December 12, 2024 at 09:25:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3}&=0 \end{align*}

Maple step by step solution

Maple trace
`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
      -> Mathieu 
         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
   trying a solution in terms of MeijerG functions 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
      trying 2nd order, integrating factor of the form mu(x,y) 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         -> Mathieu 
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying to convert to an ODE of Bessel type 
      trying to convert to an ODE of Bessel type 
      -> trying reduction of order to Riccati 
         trying Riccati sub-methods: 
            -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
            -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
            -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
--- Trying Lie symmetry methods, 2nd order --- 
`, `-> Computing symmetries using: way = 3`[0, y+1]
 
Maple dsolve solution

Solving time : 0.296 (sec)
Leaf size : maple_leaf_size

dsolve(diff(diff(y(x),x),x)-diff(y(x),x)*x^3-y(x)*x^3-x^3 = 0, 
       y(x),singsol=all)
 
\[ \text {No solution found} \]
Mathematica DSolve solution

Solving time : 0.0 (sec)
Leaf size : 0

DSolve[{D[y[x],{x,2}]-x^3*D[y[x],x]-x^3*y[x]-x^3==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 

Not solved