2.2.43 Problem 42

Maple
Mathematica
Sympy

Internal problem ID [8846]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 42
Date solved : Friday, April 25, 2025 at 05:13:58 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Maple
ode:=diff(diff(y(x),x),x)-x^3*diff(y(x),x)-x^3*y(x)-x^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
No solution found

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Kummer 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
      -> Mathieu 
         -> Equivalence to the rational form of Mathieu ODE under a power @ Mo\ 
ebius 
   trying a solution in terms of MeijerG functions 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a pow\ 
er @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(\ 
x), dx)) * 2F1([a1, a2], [b1], f) 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
      trying 2nd order, integrating factor of the form mu(x,y) 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         -> Mathieu 
            -> Equivalence to the rational form of Mathieu ODE under a power @\ 
 Moebius 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying to convert to an ODE of Bessel type 
      trying to convert to an ODE of Bessel type 
      -> trying reduction of order to Riccati 
         trying Riccati sub-methods: 
            -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
            -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
            -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
--- Trying Lie symmetry methods, 2nd order --- 
   -> Computing symmetries using: way = 3 
[0, y+1] 
   <- successful computation of symmetries. 
   -> Computing symmetries using: way = 5 
Try integration with the canonical coordinates of the symmetry [0, y+1] 
-> Calling odsolve with the ODE, diff(diff(y(x),x),x) = x^3*diff(y(x),x)+x^3*y( 
x)+x^3, y(x) 
   *** Sublevel 2 *** 
   Methods for second order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying high order exact linear fully integrable 
   trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
   trying a double symmetry of the form [xi=0, eta=F(x)] 
   -> Try solving first the homogeneous part of the ODE 
      checking if the LODE has constant coefficients 
      checking if the LODE is of Euler type 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying a Liouvillian solution using Kovacics algorithm 
      <- No Liouvillian solutions exists 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         -> Mathieu 
            -> Equivalence to the rational form of Mathieu ODE under a power @\ 
 Moebius 
      trying a solution in terms of MeijerG functions 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a \ 
power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int\ 
(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying to convert to an ODE of Bessel type 
         -> trying reduction of order to Riccati 
-> Calling odsolve with the ODE, diff(_b(_a),_a) = _a^3*_b(_a)+_a^3-_b(_a)^2, 
_b(_a), explicit 
   *** Sublevel 2 *** 
   Methods for first order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying 1st order linear 
   trying Bernoulli 
   trying separable 
   trying inverse linear 
   trying homogeneous types: 
   trying Chini 
   differential order: 1; looking for linear symmetries 
   trying exact 
   Looking for potential symmetries 
   trying Riccati 
   trying inverse_Riccati 
   trying 1st order ODE linearizable_by_differentiation 
   -> Computing symmetries using: way = 3 
[0, y+1] 
   <- successful computation of symmetries. 
   -> Computing symmetries using: way = 5
 

Mathematica
ode=D[y[x],{x,2}]-x^3*D[y[x],x]-x^3*y[x]-x^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3*y(x) - x**3*Derivative(y(x), x) - x**3 + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE y(x) + Derivative(y(x), x) + 1 - Derivative(y(x), (x, 2))/x**3 cannot be solved by the factorable group method