2.45 problem 44

2.45.1 Maple step by step solution
2.45.2 Maple trace
2.45.3 Maple dsolve solution
2.45.4 Mathematica DSolve solution

Internal problem ID [7829]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 44
Date solved : Tuesday, October 22, 2024 at 02:37:58 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Solve

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2}&=0 \end{align*}

2.45.1 Maple step by step solution

2.45.2 Maple trace
Methods for second order ODEs:
 
2.45.3 Maple dsolve solution

Solving time : 0.005 (sec)
Leaf size : 44

dsolve(diff(diff(y(x),x),x)-x^2*diff(y(x),x)-x*y(x)-x^2 = 0, 
       y(x),singsol=all)
 
\[ y = {\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \operatorname {BesselI}\left (\frac {1}{6}, \frac {x^{3}}{6}\right ) c_2 +{\mathrm e}^{\frac {x^{3}}{6}} \sqrt {x}\, \operatorname {BesselK}\left (\frac {1}{6}, \frac {x^{3}}{6}\right ) c_1 -\frac {x}{2} \]
2.45.4 Mathematica DSolve solution

Solving time : 0.319 (sec)
Leaf size : 224

DSolve[{D[y[x],{x,2}]-x^2*D[y[x],x]-x*y[x]-x^2==0,{}}, 
       y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {e^{\frac {x^3}{6}} \left (12 \left (x^3\right )^{5/6} \operatorname {Gamma}\left (\frac {1}{6}\right ) \operatorname {Gamma}\left (\frac {7}{6}\right ) \operatorname {BesselI}\left (\frac {1}{6},\frac {x^3}{6}\right ) \, _1F_1\left (-\frac {2}{3};-\frac {1}{3};-\frac {x^3}{3}\right )+\sqrt [3]{2} 3^{2/3} \sqrt [6]{x^3} x^6 \operatorname {Gamma}\left (\frac {1}{6}\right ) \operatorname {Gamma}\left (\frac {5}{6}\right ) \operatorname {BesselI}\left (-\frac {1}{6},\frac {x^3}{6}\right ) \, _1F_1\left (\frac {2}{3};\frac {7}{3};-\frac {x^3}{3}\right )-4 \operatorname {Gamma}\left (\frac {7}{6}\right ) \left (6 \sqrt [3]{2} 3^{2/3} c_1 x^{5/2} \operatorname {Gamma}\left (\frac {5}{6}\right ) \operatorname {BesselI}\left (-\frac {1}{6},\frac {x^3}{6}\right )+\operatorname {Gamma}\left (\frac {1}{6}\right ) \left (3 \left (x^3\right )^{5/6}+2 \sqrt [3]{-1} 3^{2/3} c_2 x^{5/2}\right ) \operatorname {BesselI}\left (\frac {1}{6},\frac {x^3}{6}\right )\right )\right )}{24\ 2^{2/3} 3^{5/6} x^2 \operatorname {Gamma}\left (\frac {7}{6}\right )} \]