2.2.45 Problem 44

Maple
Mathematica
Sympy

Internal problem ID [8849]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 44
Date solved : Sunday, March 30, 2025 at 01:42:38 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Maple. Time used: 0.005 (sec). Leaf size: 44
ode:=diff(diff(y(x),x),x)-x^2*diff(y(x),x)-x*y(x)-x^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
y=ex36xBesselI(16,x36)c2+ex36xBesselK(16,x36)c1x2

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      <- Bessel successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful
 

Mathematica. Time used: 0.318 (sec). Leaf size: 224
ode=D[y[x],{x,2}]-x^2*D[y[x],x]-x*y[x]-x^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)ex36(12(x3)5/6Gamma(16)Gamma(76)BesselI(16,x36)1F1(23;13;x33)+2332/3x36x6Gamma(16)Gamma(56)BesselI(16,x36)1F1(23;73;x33)4Gamma(76)(62332/3c1x5/2Gamma(56)BesselI(16,x36)+Gamma(16)(3(x3)5/6+21332/3c2x5/2)BesselI(16,x36)))24 22/335/6x2Gamma(76)
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) - x**2 - x*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) + 1 + y(x)/x - Derivative(y(x), (x, 2))/x**2 cannot be solved by the factorable group method