2.2.50 Problem 49

Maple
Mathematica
Sympy

Internal problem ID [8854]
Book : Own collection of miscellaneous problems
Section : section 2.0
Problem number : 49
Date solved : Sunday, March 30, 2025 at 01:42:58 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

Maple. Time used: 0.004 (sec). Leaf size: 26
ode:=diff(diff(y(x),x),x)-1/x*diff(y(x),x)-x^3*y(x)-x^4-1/x = 0; 
dsolve(ode,y(x), singsol=all);
 
y=x(1+c2BesselI(25,2x5/25)+c1BesselK(25,2x5/25))

Maple trace

Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   checking if the LODE is of Euler type 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Trying a Liouvillian solution using Kovacics algorithm 
   <- No Liouvillian solutions exists 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      <- Bessel successful 
   <- special function solution successful 
<- solving first the homogeneous part of the ODE successful
 

Mathematica. Time used: 0.334 (sec). Leaf size: 316
ode=D[y[x],{x,2}]-1/x*D[y[x],x]-x^3*y[x]-x^4-1/x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
y(x)5(x5/2)13/5Gamma(45)Gamma(75)BesselI(25,2x5/25)1F2(45;35,95;x525)Gamma(95)55(x5/2)7/5Gamma(15)Gamma(35)BesselI(25,2x5/25)1F2(15;65,75;x525)Gamma(65)+5(x5/2)3/5Gamma(15)Gamma(75)BesselI(25,2x5/25)1F2(15;35,45;x525)Gamma(45)+55x5/2(x5(x5/2)2/5Gamma(35)Gamma(65)BesselI(25,2x5/25)1F2(65;75,115;x525)Gamma(115)+10(c1Gamma(35)BesselI(25,2x5/25)+(1)2/5c2Gamma(75)BesselI(25,2x5/25)))10 53/5x3/2
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 - x**3*y(x) + Derivative(y(x), (x, 2)) - Derivative(y(x), x)/x - 1/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE x**5 + x**4*y(x) - x*Derivative(y(x), (x, 2)) + Derivative(y(x), x) + 1 cannot be solved by the factorable group method