2.5.15 Problem 15
Internal
problem
ID
[10250]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
15
Date
solved
:
Monday, January 26, 2026 at 09:27:06 PM
CAS
classification
:
[_quadrature]
\begin{align*}
h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}}&=b^{2} \\
\end{align*}
Solving for the derivative gives these ODE’s to solve \begin{align*}
\tag{1} h^{\prime }&=\frac {\sqrt {-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}}{\left (h+b \right ) \left (h-b \right )} \\
\tag{2} h^{\prime }&=-\frac {\sqrt {-h^{4}+4 a^{2} h^{2}+2 h^{2} b^{2}-b^{4}}}{\left (h+b \right ) \left (h-b \right )} \\
\end{align*}
Now each of the above is solved
separately.
Solving Eq. (1)
Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and
since no initial conditions are given, then the result can be written as
\[ \int _{}^{h}\frac {\left (\tau +b \right ) \left (\tau -b \right )}{\sqrt {4 a^{2} \tau ^{2}-b^{4}+2 b^{2} \tau ^{2}-\tau ^{4}}}d \tau = u +c_1 \]
Singular solutions are
found by solving \begin{align*} \frac {\sqrt {4 a^{2} h^{2}-b^{4}+2 h^{2} b^{2}-h^{4}}}{\left (h +b \right ) \left (h -b \right )}&= 0 \end{align*}
for \(h\). This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} h = -a -\sqrt {a^{2}+b^{2}}\\ h = -a +\sqrt {a^{2}+b^{2}} \end{align*}
Solving Eq. (2)
Entering first order ode autonomous solverUnable to integrate (or intergal too complicated), and
since no initial conditions are given, then the result can be written as
\[ \int _{}^{h}-\frac {\left (\tau +b \right ) \left (\tau -b \right )}{\sqrt {4 a^{2} \tau ^{2}-b^{4}+2 b^{2} \tau ^{2}-\tau ^{4}}}d \tau = u +c_2 \]
Singular solutions are
found by solving \begin{align*} -\frac {\sqrt {4 a^{2} h^{2}-b^{4}+2 h^{2} b^{2}-h^{4}}}{\left (h +b \right ) \left (h -b \right )}&= 0 \end{align*}
for \(h\). This is because of dividing by the above earlier. This gives the following singular solution(s),
which also has to satisfy the given ODE.
\begin{align*} h = -a -\sqrt {a^{2}+b^{2}}\\ h = -a +\sqrt {a^{2}+b^{2}} \end{align*}
2.5.15.1 ✓ Maple. Time used: 0.333 (sec). Leaf size: 103
ode:=h(u)^2+2*a*h(u)/(1+diff(h(u),u)^2)^(1/2) = b^2;
dsolve(ode,h(u), singsol=all);
\begin{align*}
u -\int _{}^{h}\frac {\textit {\_a}^{2}-b^{2}}{\sqrt {-\textit {\_a}^{4}+\left (4 a^{2}+2 b^{2}\right ) \textit {\_a}^{2}-b^{4}}}d \textit {\_a} -c_1 &= 0 \\
u +\int _{}^{h}\frac {\textit {\_a}^{2}-b^{2}}{\sqrt {-\textit {\_a}^{4}+\left (4 a^{2}+2 b^{2}\right ) \textit {\_a}^{2}-b^{4}}}d \textit {\_a} -c_1 &= 0 \\
\end{align*}
Maple trace
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
<- differential order: 1; missing x successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & h \left (u \right )^{2}+\frac {2 a h \left (u \right )}{\sqrt {1+\left (\frac {d}{d u}h \left (u \right )\right )^{2}}}=b^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d u}h \left (u \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d u}h \left (u \right )=\frac {\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}{\left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}, \frac {d}{d u}h \left (u \right )=-\frac {\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}{\left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}\right ] \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d u}h \left (u \right )=\frac {\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}{\left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\left (\frac {d}{d u}h \left (u \right )\right ) \left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}{\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} u \\ {} & {} & \int \frac {\left (\frac {d}{d u}h \left (u \right )\right ) \left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}{\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}d u =\int 1d u +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {2 b^{4} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \left (\mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )-\mathit {EllipticE}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}\, \left (4 a^{2}+2 b^{2}+4 a \sqrt {a^{2}+b^{2}}\right )}-\frac {b^{2} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=u +\textit {\_C1} \\ \square & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d u}h \left (u \right )=-\frac {\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}{\left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )} \\ {} & \circ & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {\left (\frac {d}{d u}h \left (u \right )\right ) \left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}{\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=-1 \\ {} & \circ & \textrm {Integrate both sides with respect to}\hspace {3pt} u \\ {} & {} & \int \frac {\left (\frac {d}{d u}h \left (u \right )\right ) \left (h \left (u \right )+b \right ) \left (h \left (u \right )-b \right )}{\sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}d u =\int \left (-1\right )d u +\textit {\_C1} \\ {} & \circ & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {2 b^{4} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \left (\mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )-\mathit {EllipticE}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}\, \left (4 a^{2}+2 b^{2}+4 a \sqrt {a^{2}+b^{2}}\right )}-\frac {b^{2} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=-u +\textit {\_C1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\frac {2 b^{4} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \left (\mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )-\mathit {EllipticE}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}\, \left (4 a^{2}+2 b^{2}+4 a \sqrt {a^{2}+b^{2}}\right )}-\frac {b^{2} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=-u +\mathit {C1} , \frac {2 b^{4} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \left (\mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )-\mathit {EllipticE}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}\, \left (4 a^{2}+2 b^{2}+4 a \sqrt {a^{2}+b^{2}}\right )}-\frac {b^{2} \sqrt {1+\frac {\left (2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \sqrt {1-\frac {\left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right ) h \left (u \right )^{2}}{b^{4}}}\, \mathit {EllipticF}\left (h \left (u \right ) \sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}, \sqrt {-1+\frac {\left (4 a^{2}+2 b^{2}\right ) \left (2 a \sqrt {a^{2}+b^{2}}+2 a^{2}+b^{2}\right )}{b^{4}}}\right )}{\sqrt {-\frac {2 a \sqrt {a^{2}+b^{2}}-2 a^{2}-b^{2}}{b^{4}}}\, \sqrt {-h \left (u \right )^{4}+4 a^{2} h \left (u \right )^{2}+2 h \left (u \right )^{2} b^{2}-b^{4}}}=u +\mathit {C1} \right \} \end {array} \]
2.5.15.2 ✓ Mathematica. Time used: 34.52 (sec). Leaf size: 913
ode=h[u]^2 + 2*a*h[u]/Sqrt[1 + (D[ h[u],u])^2] == b^2;
ic={};
DSolve[{ode,ic},h[u],u,IncludeSingularSolutions->True]
\begin{align*} \text {Solution too large to show}\end{align*}
2.5.15.3 ✗ Sympy
from sympy import *
u = symbols("u")
a = symbols("a")
b = symbols("b")
h = Function("h")
ode = Eq(2*a*h(u)/sqrt(Derivative(h(u), u)**2 + 1) - b**2 + h(u)**2,0)
ics = {}
dsolve(ode,func=h(u),ics=ics)
Timed Out
Python version: 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0]
Sympy version 1.14.0