2.5.15 Problem 15

Maple
Mathematica
Sympy

Internal problem ID [8975]
Book : Own collection of miscellaneous problems
Section : section 5.0
Problem number : 15
Date solved : Friday, April 25, 2025 at 05:32:28 PM
CAS classification : [_quadrature]

Solve

h2+2ah1+h2=b2

Solving for the derivative gives these ODE’s to solve

(1)h=h4+4a2h2+2h2b2b4(h+b)(hb)(2)h=h4+4a2h2+2h2b2b4(h+b)(hb)

Now each of the above is solved separately.

Solving Eq. (1)

Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

h(τ+b)(τb)4a2τ2b4+2b2τ2τ4dτ=u+c1

Singular solutions are found by solving

4a2h2b4+2h2b2h4(h+b)(hb)=0

for h. This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

h=aa2+b2h=a+a2+b2h=aa2+b2h=a+a2+b2

Solving Eq. (2)

Unable to integrate (or intergal too complicated), and since no initial conditions are given, then the result can be written as

h(τ+b)(τb)4a2τ2b4+2b2τ2τ4dτ=u+c2

Singular solutions are found by solving

4a2h2b4+2h2b2h4(h+b)(hb)=0

for h. This is because we had to divide by this in the above step. This gives the following singular solution(s), which also have to satisfy the given ODE.

h=aa2+b2h=a+a2+b2h=aa2+b2h=a+a2+b2

Which simplifies to

hb2τ24a2τ2b4+2b2τ2τ4dτ=u+c2h=aa2+b2h=a+a2+b2h=aa2+b2h=a+a2+b2
Maple. Time used: 1.033 (sec). Leaf size: 103
ode:=h(u)^2+2*a*h(u)/(1+diff(h(u),u)^2)^(1/2) = b^2; 
dsolve(ode,h(u), singsol=all);
 
uh_a2b2_a4+(4a2+2b2)_a2b4d_ac1=0u+h_a2b2_a4+(4a2+2b2)_a2b4d_ac1=0

Maple trace

Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
<- differential order: 1; missing  x  successful
 

Maple step by step

Let’s solveh(u)2+2ah(u)1+(dduh(u))2=b2Highest derivative means the order of the ODE is1dduh(u)Solve for the highest derivative[dduh(u)=h(u)4+4a2h(u)2+2h(u)2b2b4(h(u)+b)(h(u)b),dduh(u)=h(u)4+4a2h(u)2+2h(u)2b2b4(h(u)+b)(h(u)b)]Solve the equationdduh(u)=h(u)4+4a2h(u)2+2h(u)2b2b4(h(u)+b)(h(u)b)Separate variables(dduh(u))(h(u)+b)(h(u)b)h(u)4+4a2h(u)2+2h(u)2b2b4=1Integrate both sides with respect tou(dduh(u))(h(u)+b)(h(u)b)h(u)4+4a2h(u)2+2h(u)2b2b4du=1du+_C1Evaluate integral2b41+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4(EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)EllipticE(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4))2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4(4a2+2b2+4aa2+b2)b21+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4=u+_C1Solve the equationdduh(u)=h(u)4+4a2h(u)2+2h(u)2b2b4(h(u)+b)(h(u)b)Separate variables(dduh(u))(h(u)+b)(h(u)b)h(u)4+4a2h(u)2+2h(u)2b2b4=1Integrate both sides with respect tou(dduh(u))(h(u)+b)(h(u)b)h(u)4+4a2h(u)2+2h(u)2b2b4du=(1)du+_C1Evaluate integral2b41+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4(EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)EllipticE(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4))2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4(4a2+2b2+4aa2+b2)b21+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4=u+_C1Set of solutions{2b41+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4(EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)EllipticE(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4))2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4(4a2+2b2+4aa2+b2)b21+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4=u+C1,2b41+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4(EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)EllipticE(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4))2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4(4a2+2b2+4aa2+b2)b21+(2aa2+b22a2b2)h(u)2b41(2aa2+b2+2a2+b2)h(u)2b4EllipticF(h(u)2aa2+b22a2b2b4,1+(4a2+2b2)(2aa2+b2+2a2+b2)b4)2aa2+b22a2b2b4h(u)4+4a2h(u)2+2h(u)2b2b4=u+C1}
Mathematica. Time used: 35.557 (sec). Leaf size: 913
ode=h[u]^2 + 2*a*h[u]/Sqrt[1 + (D[ h[u],u])^2] == b^2; 
ic={}; 
DSolve[{ode,ic},h[u],u,IncludeSingularSolutions->True]
 
Solution too large to show

Sympy
from sympy import * 
u = symbols("u") 
a = symbols("a") 
b = symbols("b") 
h = Function("h") 
ode = Eq(2*a*h(u)/sqrt(Derivative(h(u), u)**2 + 1) - b**2 + h(u)**2,0) 
ics = {} 
dsolve(ode,func=h(u),ics=ics)
 
Timed Out