2.5.23 Problem 23

Maple
Mathematica
Sympy

Internal problem ID [8983]
Book : Own collection of miscellaneous problems
Section : section 5.0
Problem number : 23
Date solved : Friday, April 25, 2025 at 05:32:55 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

Unknown ode type.

Maple
ode:=diff(y(x),x) = (x*y(x)+3*x-2*y(x)+6)/(x*y(x)-3*x-2*y(x)+6); 
dsolve(ode,y(x), singsol=all);
 
No solution found

Maple trace

Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
trying Abel 
Looking for potential symmetries 
Looking for potential symmetries 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
   -> Computing symmetries using: way = 3 
   -> Computing symmetries using: way = 4 
   -> Computing symmetries using: way = 2 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type
 

Maple step by step

Let’s solveddxy(x)=xy(x)+3x2y(x)+6xy(x)3x2y(x)+6Highest derivative means the order of the ODE is1ddxy(x)Solve for the highest derivativeddxy(x)=xy(x)+3x2y(x)+6xy(x)3x2y(x)+6
Mathematica
ode=D[y[x],x]==(x*y[x]+3*x-2*y[x]+6)/(x*y[x]-3*x-2*y[x]+6); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (x*y(x) + 3*x - 2*y(x) + 6)/(x*y(x) - 3*x - 2*y(x) + 6),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out