Internal
problem
ID
[7964]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
5.0
Problem
number
:
23
Date
solved
:
Monday, October 21, 2024 at 04:39:57 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
Unknown ode type.
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \end {array} \]
5.23.3 Maple dsolve solution
Solving time : 0.014
(sec)
Leaf size : maple_leaf_size
dsolve(diff(y(x),x) = (x*y(x)+3*x-2*y(x)+6)/(x*y(x)-3*x-2*y(x)+6),
y(x),singsol=all)
\[ \text {No solution found} \]
5.23.4 Mathematica DSolve solution
Solving time : 0.0
(sec)
Leaf size : 0
DSolve[{D[y[x],x]==(x*y[x]+3*x-2*y[x]+6)/(x*y[x]-3*x-2*y[x]+6),{}},
y[x],x,IncludeSingularSolutions->True]
Not solved