5.1 problem Problem 24.17

5.1.1 Existence and uniqueness analysis
5.1.2 Solving as laplace ode
5.1.3 Maple step by step solution

Internal problem ID [5200]
Internal file name [OUTPUT/4693_Sunday_June_05_2022_03_03_30_PM_75048576/index.tex]

Book: Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section: Chapter 24. Solutions of linear DE by Laplace transforms. Supplementary Problems. page 248
Problem number: Problem 24.17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y^{\prime }+2 y=0} \] With initial conditions \begin {align*} [y \left (0\right ) = 1] \end {align*}

5.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=2\\ q(x) &=0 \end {align*}

Hence the ode is \begin {align*} y^{\prime }+2 y = 0 \end {align*}

The domain of \(p(x)=2\) is \[ \{-\infty

5.1.2 Solving as laplace ode

Solving using the Laplace transform method. Let \[ \mathcal {L}\left (y\right ) =Y(s) \] Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right )&= s Y(s) - y \left (0\right ) \end {align*}

The given ode now becomes an algebraic equation in the Laplace domain \begin {align*} s Y \left (s \right )-y \left (0\right )+2 Y \left (s \right ) = 0\tag {1} \end {align*}

Replacing initial condition gives \begin {align*} s Y \left (s \right )-1+2 Y \left (s \right ) = 0 \end {align*}

Solving for \(Y(s)\) gives \begin {align*} Y(s) = \frac {1}{s +2} \end {align*}

Taking the inverse Laplace transform gives \begin {align*} y&= \mathcal {L}^{-1}\left (Y(s)\right )\\ &= \mathcal {L}^{-1}\left (\frac {1}{s +2}\right )\\ &= {\mathrm e}^{-2 x} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-2 x} \\ \end{align*}

(a) Solution plot

(b) Slope field plot

Verification of solutions

\[ y = {\mathrm e}^{-2 x} \] Verified OK.

5.1.3 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime }+2 y=0, y \left (0\right )=1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-2 y \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime }}{y}=-2 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime }}{y}d x =\int \left (-2\right )d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \ln \left (y\right )=-2 x +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y={\mathrm e}^{-2 x +c_{1}} \\ \bullet & {} & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=1 \\ {} & {} & 1={\mathrm e}^{c_{1}} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} c_{1} \\ {} & {} & c_{1} =0 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} c_{1} =0\hspace {3pt}\textrm {into general solution and simplify}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{-2 x} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y={\mathrm e}^{-2 x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
<- 1st order linear successful`
 

Solution by Maple

Time used: 0.391 (sec). Leaf size: 8

dsolve([diff(y(x),x)+2*y(x)=0,y(0) = 1],y(x), singsol=all)
 

\[ y \left (x \right ) = {\mathrm e}^{-2 x} \]

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 10

DSolve[{y'[x]+2*y[x]==0,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-2 x} \]