2.2.6 Problem 6
Internal
problem
ID
[10417]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
6
Date
solved
:
Friday, December 12, 2025 at 10:02:13 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
2.2.6.1 second order ode missing x
4.695 (sec)
\begin{align*}
y^{\prime \prime } y^{\prime }+y^{n}&=0 \\
\end{align*}
Entering second order ode missing \(x\) solverThis is missing independent variable second order ode.
Solved by reduction of order by using substitution which makes the dependent variable \(y\) an
independent variable. Using \begin{align*} y' &= p \end{align*}
Then
\begin{align*} y'' &= \frac {dp}{dx}\\ &= \frac {dp}{dy}\frac {dy}{dx}\\ &= p \frac {dp}{dy} \end{align*}
Hence the ode becomes
\begin{align*} p \left (y \right )^{2} \left (\frac {d}{d y}p \left (y \right )\right )+y^{n} = 0 \end{align*}
Which is now solved as first order ode for \(p(y)\).
Entering first order ode separable solverThe ode
\begin{equation}
p^{\prime } = -\frac {y^{n}}{p^{2}}
\end{equation}
is separable as it can be written as
\begin{align*} p^{\prime }&= -\frac {y^{n}}{p^{2}}\\ &= f(y) g(p) \end{align*}
Where
\begin{align*} f(y) &= -y^{n}\\ g(p) &= \frac {1}{p^{2}} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(y) \,dy} \\
\int { p^{2}\,dp} &= \int { -y^{n} \,dy} \\
\end{align*}
\[
\frac {p^{3}}{3}=-\frac {y^{n +1}}{n +1}+c_1
\]
For solution (1) found earlier, since \(p=y^{\prime }\) then we now have a new first order ode to
solve which is \begin{align*} \frac {{y^{\prime }}^{3}}{3} = -\frac {y^{n +1}}{n +1}+c_1 \end{align*}
Entering first order ode dAlembert solverLet \(p=y^{\prime }\) the ode becomes
\begin{align*} \frac {p^{3}}{3} = -\frac {y^{n +1}}{n +1}+c_1 \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= {\mathrm e}^{\frac {\ln \left (-\frac {1}{3} p^{3} n -\frac {1}{3} p^{3}+c_1 n +c_1 \right )}{n +1}} \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= 3^{-\frac {1}{n +1}} {\left (-\left (n +1\right ) \left (p^{3}-3 c_1 \right )\right )}^{\frac {1}{n +1}} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = \frac {3 \,3^{-\frac {1}{n +1}} \left (-p^{3} n -p^{3}+3 c_1 n +3 c_1 \right )^{\frac {1}{n +1}} p^{2} p^{\prime }\left (x \right )}{\left (n +1\right ) \left (p^{3}-3 c_1 \right )}
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=0 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = \left (c_1 \left (n +1\right )\right )^{\frac {1}{n +1}} \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \frac {3^{\frac {1}{n +1}} \left (-p \left (x \right )^{3} n -p \left (x \right )^{3}+3 c_1 n +3 c_1 \right )^{-\frac {1}{n +1}} \left (n +1\right ) \left (p \left (x \right )^{3}-3 c_1 \right )}{3 p \left (x \right )}
\end{equation}
This ODE is now solved for \(p \left (x \right )\).
No inversion is needed.
Unable to integrate (or intergal too complicated), and since no initial conditions are given, then
the result can be written as
\[ \int _{}^{p \left (x \right )}\frac {3^{\frac {n}{n +1}} \tau {\left (\left (n +1\right ) \left (-\tau ^{3}+3 c_1 \right )\right )}^{\frac {1}{n +1}}}{\left (n +1\right ) \left (\tau ^{3}-3 c_1 \right )}d \tau = x +c_2 \]
Singular solutions are found by solving \begin{align*} \frac {3^{-\frac {n}{n +1}} \left (n +1\right ) \left (p^{3}-3 c_1 \right ) {\left (\left (n +1\right ) \left (-p^{3}+3 c_1 \right )\right )}^{-\frac {1}{n +1}}}{p}&= 0 \end{align*}
for \(p \left (x \right )\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (x \right ) = 3^{{1}/{3}} c_1^{{1}/{3}}\\ p \left (x \right ) = -\frac {3^{{1}/{3}} c_1^{{1}/{3}}}{2}-\frac {i 3^{{5}/{6}} c_1^{{1}/{3}}}{2} \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
y &= 3^{-\frac {1}{n +1}} {\left (-\left (n +1\right ) \left (\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {\tau 3^{\frac {n}{n +1}} {\left (\left (n +1\right ) \left (-\tau ^{3}+3 c_1 \right )\right )}^{\frac {1}{n +1}}}{\left (n +1\right ) \left (-\tau ^{3}+3 c_1 \right )}d \tau +x +c_2 \right )^{3}-3 c_1 \right )\right )}^{\frac {1}{n +1}} \\
y &= 0 \\
y &= 0 \\
\end{align*}
The solution \[
y = 0
\]
was found not to satisfy the ode
or the IC. Hence it is removed. The solution \[
y = \left (c_1 \left (n +1\right )\right )^{\frac {1}{n +1}}
\]
was found not to satisfy the ode or the IC. Hence it
is removed.
Summary of solutions found
\begin{align*}
y &= 3^{-\frac {1}{n +1}} {\left (-\left (n +1\right ) \left (\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {\tau 3^{\frac {n}{n +1}} {\left (\left (n +1\right ) \left (-\tau ^{3}+3 c_1 \right )\right )}^{\frac {1}{n +1}}}{\left (n +1\right ) \left (-\tau ^{3}+3 c_1 \right )}d \tau +x +c_2 \right )^{3}-3 c_1 \right )\right )}^{\frac {1}{n +1}} \\
\end{align*}
2.2.6.2 ✓ Maple. Time used: 0.011 (sec). Leaf size: 174
ode:=diff(y(x),x)*diff(diff(y(x),x),x)+y(x)^n = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
\frac {\left (-2-2 n \right ) \int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{1+n}-c_1 \right ) \left (1+n \right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} -\left (x +c_2 \right ) \left (1+i \sqrt {3}\right )}{1+i \sqrt {3}} &= 0 \\
-\frac {2 i \left (1+n \right ) \int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{1+n}-c_1 \right ) \left (1+n \right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} +\left (x +c_2 \right ) \left (\sqrt {3}+i\right )}{\sqrt {3}+i} &= 0 \\
\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{1+n}-c_1 \right ) \left (1+n \right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} n +\int _{}^{y}\frac {1}{{\left (-\left (3 \textit {\_a}^{1+n}-c_1 \right ) \left (1+n \right )^{2}\right )}^{{1}/{3}}}d \textit {\_a} -c_2 -x &= 0 \\
\end{align*}
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-> Computing symmetries using: way = 3
-> Calling odsolve with the ODE, diff(_b(_a),_a)*_b(_a)+_a^n/_b(_a) = 0, _b(_a)
, HINT = [[-3/(n-2)*_a, -_b*(1+n)/(n-2)]]
*** Sublevel 2 ***
symmetry methods on request
1st order, trying reduction of order with given symmetries:
[-3/(n-2)*_a, -_b*(1+n)/(n-2)]
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE, diff(y(x),x) = 1/3*y(x)*(1+n)/x, y(x)
*** Sublevel 3 ***
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful
2.2.6.3 ✓ Mathematica. Time used: 1.291 (sec). Leaf size: 910
ode=D[y[x],{x,2}]*D[y[x],x]+y[x]^n==0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} \text {Solution too large to show}\end{align*}
2.2.6.4 ✗ Sympy
from sympy import *
x = symbols("x")
n = symbols("n")
y = Function("y")
ode = Eq(y(x)**n + Derivative(y(x), x)*Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE y(x)**n/Derivative(y(x), (x, 2)) + Derivative(y(x), x) cannot be solved by the factorable group method