2.2.31 Problem 31
Internal
problem
ID
[10442]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
31
Date
solved
:
Monday, December 08, 2025 at 08:56:23 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
2.2.31.1 second order change of variable on y method 1
0.831 (sec)
\begin{align*}
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\
\end{align*}
Entering second order change of variable on \(y\) method 1 solverThis is second order
non-homogeneous ODE. Let the solution be \[
y = y_h + y_p
\]
Where \(y_h\) is the solution to the homogeneous ODE
\begin{align*} A y''(x) + B y'(x) + C y(x) &= 0 \end{align*}
And \(y_p\) is a particular solution to the non-homogeneous ODE
\begin{align*} A y''(x) + B y'(x) + C y(x) &= f(x) \end{align*}
\(y_h\) is the solution to
\[
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0
\]
In normal form the given ode is written as \begin{align*} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y&=0 \tag {2} \end{align*}
Where
\begin{align*} p \left (x \right )&=-2 x b\\ q \left (x \right )&=b^{2} x^{2} \end{align*}
Calculating the Liouville ode invariant \(Q\) given by
\begin{align*} Q &= q - \frac {p'}{2}- \frac {p^2}{4} \\ &= b^{2} x^{2} - \frac {\left (-2 x b\right )'}{2}- \frac {\left (-2 x b\right )^2}{4} \\ &= b^{2} x^{2} - \frac {\left (-2 b\right )}{2}- \frac {\left (4 b^{2} x^{2}\right )}{4} \\ &= b^{2} x^{2} - \left (-b\right )-b^{2} x^{2}\\ &= b \end{align*}
Since the Liouville ode invariant does not depend on the independent variable \(x\) then the
transformation
\begin{align*} y = v \left (x \right ) z \left (x \right )\tag {3} \end{align*}
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z \left (x \right )\) is given by
\begin{align*} z \left (x \right )&={\mathrm e}^{-\int \frac {p \left (x \right )}{2}d x}\\ &= e^{-\int \frac {-2 x b}{2} }\\ &= {\mathrm e}^{\frac {b \,x^{2}}{2}}\tag {5} \end{align*}
Hence (3) becomes
\begin{align*} y = v \left (x \right ) {\mathrm e}^{\frac {b \,x^{2}}{2}}\tag {4} \end{align*}
Applying this change of variable to the original ode results in
\begin{align*} {\mathrm e}^{\frac {b \,x^{2}}{2}} \left (v \left (x \right ) b +v^{\prime \prime }\left (x \right )\right ) = 0 \end{align*}
Which is now solved for \(v \left (x \right )\).
The above ode simplifies to
\begin{align*} v \left (x \right ) b +v^{\prime \prime }\left (x \right ) = 0 \end{align*}
Entering second order linear constant coefficient ode solver
This is second order with constant coefficients homogeneous ODE. In standard form the
ODE is
\[ A v''(x) + B v'(x) + C v(x) = 0 \]
Where in the above \(A=1, B=0, C=b\). Let the solution be \(v \left (x \right )=e^{\lambda x}\). Substituting this into the ODE
gives \[ \lambda ^{2} {\mathrm e}^{x \lambda }+b \,{\mathrm e}^{x \lambda } = 0 \tag {1} \]
Since exponential function is never zero, then dividing Eq(2) throughout by \(e^{\lambda x}\)
gives \[ \lambda ^{2}+b = 0 \tag {2} \]
Equation (2) is the characteristic equation of the ODE. Its roots determine the
general solution form.Using the quadratic formula \[ \lambda _{1,2} = \frac {-B}{2 A} \pm \frac {1}{2 A} \sqrt {B^2 - 4 A C} \]
Substituting \(A=1, B=0, C=b\) into the above gives
\begin{align*} \lambda _{1,2} &= \frac {0}{(2) \left (1\right )} \pm \frac {1}{(2) \left (1\right )} \sqrt {0^2 - (4) \left (1\right )\left (b\right )}\\ &= \pm \sqrt {-b} \end{align*}
Hence
\begin{align*}
\lambda _1 &= + \sqrt {-b} \\
\lambda _2 &= - \sqrt {-b} \\
\end{align*}
Which simplifies to \begin{align*}
\lambda _1 &= \sqrt {-b} \\
\lambda _2 &= -\sqrt {-b} \\
\end{align*}
Since roots are distinct, then the solution is \begin{align*}
v \left (x \right ) &= c_1 e^{\lambda _1 x} + c_2 e^{\lambda _2 x} \\
v \left (x \right ) &= c_1 e^{\left (\sqrt {-b}\right )x} +c_2 e^{\left (-\sqrt {-b}\right )x} \\
\end{align*}
Or \[
v \left (x \right ) =c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}
\]
Now that \(v \left (x \right )\) is known,
then \begin{align*} y&= v \left (x \right ) z \left (x \right )\\ &= \left (c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}\right ) \left (z \left (x \right )\right )\tag {7} \end{align*}
But from (5)
\begin{align*} z \left (x \right )&= {\mathrm e}^{\frac {b \,x^{2}}{2}} \end{align*}
Hence (7) becomes
\begin{align*} y = \left (c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}\right ) {\mathrm e}^{\frac {b \,x^{2}}{2}} \end{align*}
Therefore the homogeneous solution \(y_h\) is
\[
y_h = \left (c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}\right ) {\mathrm e}^{\frac {b \,x^{2}}{2}}
\]
The particular solution \(y_p\) can be found using either the
method of undetermined coefficients, or the method of variation of parameters. The method of
variation of parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on \(x\) as well. Let \begin{equation}
\tag{1} y_p(x) = u_1 y_1 + u_2 y_2
\end{equation}
Where \(u_1,u_2\) to be determined, and \(y_1,y_2\) are the two basis solutions (the
two linearly independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as \begin{align*}
y_1 &= {\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \\
y_2 &= {\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \\
\end{align*}
In the Variation of parameters \(u_1,u_2\) are found using \begin{align*}
\tag{2} u_1 &= -\int \frac {y_2 f(x)}{a W(x)} \\
\tag{3} u_2 &= \int \frac {y_1 f(x)}{a W(x)} \\
\end{align*}
Where \(W(x)\) is the Wronskian
and \(a\) is the coefficient in front of \(y''\) in the given ODE. The Wronskian is given by \(W= \begin {vmatrix} y_1 & y_{2} \\ y_{1}^{\prime } & y_{2}^{\prime } \end {vmatrix} \). Hence \[ W = \begin {vmatrix} {\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} & {\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \\ \frac {d}{dx}\left ({\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}\right ) & \frac {d}{dx}\left ({\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}\right ) \end {vmatrix} \]
Which
gives \[ W = \begin {vmatrix} {\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} & {\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \\ -{\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \sqrt {-b}+{\mathrm e}^{-\sqrt {-b}\, x} x b \,{\mathrm e}^{\frac {b \,x^{2}}{2}} & \sqrt {-b}\, {\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}+{\mathrm e}^{\sqrt {-b}\, x} x b \,{\mathrm e}^{\frac {b \,x^{2}}{2}} \end {vmatrix} \]
Therefore \[
W = \left ({\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}\right )\left (\sqrt {-b}\, {\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}+{\mathrm e}^{\sqrt {-b}\, x} x b \,{\mathrm e}^{\frac {b \,x^{2}}{2}}\right ) - \left ({\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}\right )\left (-{\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \sqrt {-b}+{\mathrm e}^{-\sqrt {-b}\, x} x b \,{\mathrm e}^{\frac {b \,x^{2}}{2}}\right )
\]
Which simplifies to \[
W = 2 \,{\mathrm e}^{b \,x^{2}} \sqrt {-b}
\]
Which simplifies to \[
W = 2 \,{\mathrm e}^{b \,x^{2}} \sqrt {-b}
\]
Therefore Eq. (2) becomes \[
u_1 = -\int \frac {{\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} x}{2 \,{\mathrm e}^{b \,x^{2}} \sqrt {-b}}\,dx
\]
Which
simplifies to \[
u_1 = - \int \frac {x \,{\mathrm e}^{-\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}d x
\]
Hence \[
u_1 = -\frac {-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}+\sqrt {-b}\, x}}{b}+\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}-\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}}{2 \sqrt {-b}}
\]
And Eq. (3) becomes \[
u_2 = \int \frac {{\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} x}{2 \,{\mathrm e}^{b \,x^{2}} \sqrt {-b}}\,dx
\]
Which simplifies to \[
u_2 = \int \frac {x \,{\mathrm e}^{-\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}d x
\]
Hence \[
u_2 = \frac {-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{b}-\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}+\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}}{2 \sqrt {-b}}
\]
Therefore the particular
solution, from equation (1) is \[
y_p(x) = -\frac {\left (-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}+\sqrt {-b}\, x}}{b}+\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}-\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}\right ) {\mathrm e}^{-\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}}}{2 \sqrt {-b}}+\frac {{\mathrm e}^{\sqrt {-b}\, x} {\mathrm e}^{\frac {b \,x^{2}}{2}} \left (-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{b}-\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}+\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}\right )}{2 \sqrt {-b}}
\]
Which simplifies to \[
y_p(x) = \frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}}
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (\left (c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}\right ) {\mathrm e}^{\frac {b \,x^{2}}{2}}\right ) + \left (\frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \left (c_1 \,{\mathrm e}^{\sqrt {-b}\, x}+c_2 \,{\mathrm e}^{-\sqrt {-b}\, x}\right ) {\mathrm e}^{\frac {b \,x^{2}}{2}}+\frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}} \\
\end{align*}
2.2.31.2 second order kovacic
0.297 (sec)
\begin{align*}
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y&=x \\
\end{align*}
Entering kovacic solverWriting the ode as \begin{align*} y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end{align*}
Comparing (1) and (2) shows that
\begin{align*} A &= 1 \\ B &= -2 x b\tag {3} \\ C &= b^{2} x^{2} \end{align*}
Applying the Liouville transformation on the dependent variable gives
\begin{align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end{align*}
Then (2) becomes
\begin{align*} z''(x) = r z(x)\tag {4} \end{align*}
Where \(r\) is given by
\begin{align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end{align*}
Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives
\begin{align*} r &= \frac {-b}{1}\tag {6} \end{align*}
Comparing the above to (5) shows that
\begin{align*} s &= -b\\ t &= 1 \end{align*}
Therefore eq. (4) becomes
\begin{align*} z''(x) &= \left ( -b\right ) z(x)\tag {7} \end{align*}
Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\begin{align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end{align*}
The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases
depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these
cases.
| | |
| Case |
Allowed pole order for \(r\) |
Allowed value for \(\mathcal {O}(\infty )\) |
| | |
| 1 |
\(\left \{ 0,1,2,4,6,8,\cdots \right \} \) |
\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \) |
| | |
|
2
|
Need to have at least one pole
that is either order \(2\) or odd order
greater than \(2\). Any other pole order
is allowed as long as the above
condition is satisfied. Hence the
following set of pole orders are all
allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\). |
no condition |
| | |
| 3 |
\(\left \{ 1,2\right \} \) |
\(\left \{ 2,3,4,5,6,7,\cdots \right \} \) |
| | |
Table 2.42: Necessary conditions for each Kovacic case
The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore
\begin{align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - 0 \\ &= 0 \end{align*}
There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole
larger than \(2\) and the order at \(\infty \) is \(0\) then the necessary conditions for case one are met. Therefore
\begin{align*} L &= [1] \end{align*}
Since \(r = -b\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for
transformed ode \(z''=r z\) as one solution is
\[ z_1(x) = {\mathrm e}^{\sqrt {-b}\, x} \]
Using the above, the solution for the original ode can now be
found. The first solution to the original ode in \(y\) is found from \begin{align*}
y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\
&= z_1 e^{ -\int \frac {1}{2} \frac {-2 x b}{1} \,dx} \\
&= z_1 e^{\frac {b \,x^{2}}{2}} \\
&= z_1 \left ({\mathrm e}^{\frac {b \,x^{2}}{2}}\right ) \\
\end{align*}
Which simplifies to \[
y_1 = {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}
\]
The second
solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \]
Substituting gives \begin{align*}
y_2 &= y_1 \int \frac { e^{\int -\frac {-2 x b}{1} \,dx}}{\left (y_1\right )^2} \,dx \\
&= y_1 \int \frac { e^{b \,x^{2}}}{\left (y_1\right )^2} \,dx \\
&= y_1 \left (-\frac {{\mathrm e}^{b \,x^{2}} {\mathrm e}^{-x \left (x b +2 \sqrt {-b}\right )}}{2 \sqrt {-b}}\right ) \\
\end{align*}
Therefore the
solution is
\begin{align*}
y &= c_1 y_1 + c_2 y_2 \\
&= c_1 \left ({\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}\right ) + c_2 \left ({\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}\left (-\frac {{\mathrm e}^{b \,x^{2}} {\mathrm e}^{-x \left (x b +2 \sqrt {-b}\right )}}{2 \sqrt {-b}}\right )\right ) \\
\end{align*}
This is second order nonhomogeneous ODE. Let the solution be \[
y = y_h + y_p
\]
Where \(y_h\) is the solution to the
homogeneous ODE \[
A y''(x) + B y'(x) + C y(x) = 0
\]
And \(y_p\) is a particular solution to the nonhomogeneous ODE \[
A y''(x) + B y'(x) + C y(x) = f(x)
\]
\(y_h\) is the solution
to \[
y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0
\]
The homogeneous solution is found using the Kovacic algorithm which results in \[
y_h = c_1 \,{\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}-\frac {c_2 \,{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}
\]
The
particular solution \(y_p\) can be found using either the method of undetermined coefficients, or the
method of variation of parameters. The method of variation of parameters will be used as it is
more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let \begin{equation}
\tag{1} y_p(x) = u_1 y_1 + u_2 y_2
\end{equation}
Where \(u_1,u_2\)
to be determined, and \(y_1,y_2\) are the two basis solutions (the two linearly independent solutions of the
homogeneous ODE) found earlier when solving the homogeneous ODE as \begin{align*}
y_1 &= {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} \\
y_2 &= -\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}} \\
\end{align*}
In the Variation of
parameters \(u_1,u_2\) are found using \begin{align*}
\tag{2} u_1 &= -\int \frac {y_2 f(x)}{a W(x)} \\
\tag{3} u_2 &= \int \frac {y_1 f(x)}{a W(x)} \\
\end{align*}
Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y''\) in
the given ODE. The Wronskian is given by \(W= \begin {vmatrix} y_1 & y_{2} \\ y_{1}^{\prime } & y_{2}^{\prime } \end {vmatrix} \). Hence \[ W = \begin {vmatrix} {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} & -\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}} \\ \frac {d}{dx}\left ({\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}\right ) & \frac {d}{dx}\left (-\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}\right ) \end {vmatrix} \]
Which gives \[ W = \begin {vmatrix} {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} & -\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}} \\ \left (x b +\sqrt {-b}\right ) {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} & -\frac {\left (x b -\sqrt {-b}\right ) {\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}} \end {vmatrix} \]
Therefore \[
W = \left ({\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}\right )\left (-\frac {\left (x b -\sqrt {-b}\right ) {\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}\right ) - \left (-\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}\right )\left (\left (x b +\sqrt {-b}\right ) {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}\right )
\]
Which
simplifies to \[
W = {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} {\mathrm e}^{-\frac {x \left (-x b +2 \sqrt {-b}\right )}{2}}
\]
Which simplifies to \[
W = {\mathrm e}^{b \,x^{2}}
\]
Therefore Eq. (2) becomes \[
u_1 = -\int \frac {-\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}} x}{2 \sqrt {-b}}}{{\mathrm e}^{b \,x^{2}}}\,dx
\]
Which simplifies to \[
u_1 = - \int -\frac {x \,{\mathrm e}^{-\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}d x
\]
Hence \[
u_1 = \frac {-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{b}-\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}+\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}}{2 \sqrt {-b}}
\]
And Eq. (3) becomes \[
u_2 = \int \frac {{\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}} x}{{\mathrm e}^{b \,x^{2}}}\,dx
\]
Which simplifies to \[
u_2 = \int x \,{\mathrm e}^{-\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}d x
\]
Hence \[
u_2 = -\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}+\sqrt {-b}\, x}}{b}+\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}-\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}
\]
Therefore the particular
solution, from equation (1) is \[
y_p(x) = \frac {\left (-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{b}-\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}+\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}\right ) {\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}-\frac {{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}} \left (-\frac {{\mathrm e}^{-\frac {b \,x^{2}}{2}+\sqrt {-b}\, x}}{b}+\frac {\sqrt {-b}\, \sqrt {\pi }\, {\mathrm e}^{-\frac {1}{2}} \sqrt {2}\, \operatorname {erf}\left (\frac {\sqrt {2}\, \sqrt {b}\, x}{2}-\frac {\sqrt {-b}\, \sqrt {2}}{2 \sqrt {b}}\right )}{2 b^{{3}/{2}}}\right )}{2 \sqrt {-b}}
\]
Which simplifies to \[
y_p(x) = \frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}}
\]
Therefore the general solution is
\begin{align*}
y &= y_h + y_p \\
&= \left (c_1 \,{\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}-\frac {c_2 \,{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}}\right ) + \left (\frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}}\right ) \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {\pi }\, \sqrt {2}\, \left (-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 \sqrt {-b}\, x}+\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-x b +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-\sqrt {-b}\, x}}{4 b^{{3}/{2}}}+c_1 \,{\mathrm e}^{\frac {x \left (x b +2 \sqrt {-b}\right )}{2}}-\frac {c_2 \,{\mathrm e}^{\frac {x \left (x b -2 \sqrt {-b}\right )}{2}}}{2 \sqrt {-b}} \\
\end{align*}
2.2.31.3 ✓ Maple. Time used: 0.006 (sec). Leaf size: 123
ode:=diff(diff(y(x),x),x)-2*b*x*diff(y(x),x)+b^2*x^2*y(x) = x;
dsolve(ode,y(x), singsol=all);
\[
y = \frac {-\frac {\sqrt {2}\, \sqrt {\pi }\, \left (\operatorname {erf}\left (\frac {\sqrt {2}\, \left (b x +\sqrt {-b}\right )}{2 \sqrt {b}}\right ) {\mathrm e}^{2 x \sqrt {-b}}-\operatorname {erf}\left (\frac {\sqrt {2}\, \left (-b x +\sqrt {-b}\right )}{2 \sqrt {b}}\right )\right ) {\mathrm e}^{-\frac {1}{2}+\frac {b \,x^{2}}{2}-x \sqrt {-b}}}{4}+b^{{3}/{2}} \left ({\mathrm e}^{\frac {x \left (b x -2 \sqrt {-b}\right )}{2}} c_1 +{\mathrm e}^{\frac {x \left (b x +2 \sqrt {-b}\right )}{2}} c_2 \right )}{b^{{3}/{2}}}
\]
Maple trace
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful
2.2.31.4 ✓ Mathematica. Time used: 0.263 (sec). Leaf size: 162
ode=D[y[x],{x,2}]-2*b*x*D[y[x],x]+b^2*x^2*y[x]==x;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \frac {e^{\frac {b x^2}{2}-i \sqrt {b} x} \left (2 \sqrt {b} \int _1^x\frac {i e^{i \sqrt {b} K[1]-\frac {1}{2} b K[1]^2} K[1]}{2 \sqrt {b}}dK[1]-i e^{2 i \sqrt {b} x} \int _1^xe^{-\frac {1}{2} b K[2]^2-i \sqrt {b} K[2]} K[2]dK[2]-i c_2 e^{2 i \sqrt {b} x}+2 \sqrt {b} c_1\right )}{2 \sqrt {b}} \end{align*}
2.2.31.5 ✗ Sympy
from sympy import *
x = symbols("x")
b = symbols("b")
y = Function("y")
ode = Eq(b**2*x**2*y(x) - 2*b*x*Derivative(y(x), x) - x + Derivative(y(x), (x, 2)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (b**2*x**2*y(x) - x + Derivative(y(x), (x, 2)))/(2*b*x) cannot be solved by the factorable group method