2.2.41 problem 41
Internal
problem
ID
[8840]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
41
Date
solved
:
Tuesday, December 17, 2024 at 01:04:32 PM
CAS
classification
:
[[_Riccati, _special]]
Solve
\begin{align*} y^{\prime }&=x -y^{2} \end{align*}
Solved as first order ode of type reduced Riccati
Time used: 0.119 (sec)
This is reduced Riccati ode of the form
\begin{align*} y^{\prime }&=a \,x^{n}+b y^{2} \end{align*}
Comparing the given ode to the above shows that
\begin{align*} a &= 1\\ b &= -1\\ n &= 1 \end{align*}
Since \(n\neq -2\) then the solution of the reduced Riccati ode is given by
\begin{align*} w & =\sqrt {x}\left \{ \begin {array}[c]{cc} c_{1}\operatorname {BesselJ}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab} x^{k}\right ) +c_{2}\operatorname {BesselY}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {ab}x^{k}\right ) & ab>0\\ c_{1}\operatorname {BesselI}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) +c_{2}\operatorname {BesselK}\left ( \frac {1}{2k},\frac {1}{k}\sqrt {-ab}x^{k}\right ) & ab<0 \end {array} \right . \tag {1}\\ y & =-\frac {1}{b}\frac {w^{\prime }}{w}\nonumber \\ k &=1+\frac {n}{2}\nonumber \end{align*}
Since \(ab<0\) then EQ(1) gives
\begin{align*} k &= {\frac {3}{2}}\\ w &= \sqrt {x}\, \left (c_1 \operatorname {BesselI}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )+c_2 \operatorname {BesselK}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )\right ) \end{align*}
Therefore the solution becomes
\begin{align*} y & =-\frac {1}{b}\frac {w^{\prime }}{w} \end{align*}
Substituting the value of \(b,w\) found above and simplyfing gives
\[
y = \frac {\sqrt {x}\, \left (\operatorname {BesselI}\left (-\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right ) c_1 -\operatorname {BesselK}\left (\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right ) c_2 \right )}{c_1 \operatorname {BesselI}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )+c_2 \operatorname {BesselK}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )}
\]
Letting \(c_2 = 1\) the above becomes
\[
y = \frac {\sqrt {x}\, \left (\operatorname {BesselI}\left (-\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right ) c_1 -\operatorname {BesselK}\left (\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right )\right )}{c_1 \operatorname {BesselI}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )+\operatorname {BesselK}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )}
\]
Figure 2.163: Slope field plot
\(y^{\prime } = x -y^{2}\)
Summary of solutions found
\begin{align*}
y &= \frac {\sqrt {x}\, \left (\operatorname {BesselI}\left (-\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right ) c_1 -\operatorname {BesselK}\left (\frac {2}{3}, \frac {2 x^{{3}/{2}}}{3}\right )\right )}{c_1 \operatorname {BesselI}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )+\operatorname {BesselK}\left (\frac {1}{3}, \frac {2 x^{{3}/{2}}}{3}\right )} \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x -y \left (x \right )^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y \left (x \right )=x -y \left (x \right )^{2} \end {array} \]
Maple trace
` Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful `
Maple dsolve solution
Solving time : 0.003
(sec)
Leaf size : 23
dsolve ( diff ( y ( x ), x ) = x-y(x)^2,
y(x),singsol=all)
\[
y = \frac {c_{1} \operatorname {AiryAi}\left (1, x\right )+\operatorname {AiryBi}\left (1, x\right )}{c_{1} \operatorname {AiryAi}\left (x \right )+\operatorname {AiryBi}\left (x \right )}
\]
Mathematica DSolve solution
Solving time : 0.18
(sec)
Leaf size : 223
DSolve [{ D [ y [ x ], x ]== x - y [ x ]^2,{}},
y[x],x,IncludeSingularSolutions-> True ]
\begin{align*}
y(x)\to -\frac {-i x^{3/2} \left (2 \operatorname {BesselJ}\left (-\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+c_1 \left (\operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )-\operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )\right )\right )-c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )}{2 x \left (\operatorname {BesselJ}\left (\frac {1}{3},\frac {2}{3} i x^{3/2}\right )+c_1 \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )\right )} \\
y(x)\to \frac {i x^{3/2} \operatorname {BesselJ}\left (-\frac {4}{3},\frac {2}{3} i x^{3/2}\right )-i x^{3/2} \operatorname {BesselJ}\left (\frac {2}{3},\frac {2}{3} i x^{3/2}\right )+\operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{3},\frac {2}{3} i x^{3/2}\right )} \\
\end{align*}