2.45 problem 45

2.45.1 Solving as second order bessel ode ode
2.45.2 Maple step by step solution

Internal problem ID [7486]
Internal file name [OUTPUT/6453_Sunday_June_19_2022_05_03_12_PM_75086495/index.tex]

Book: Second order enumerated odes
Section: section 2
Problem number: 45.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode"

Maple gives the following as the ode type

[_Bessel]

\[ \boxed {x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y=0} \]

2.45.1 Solving as second order bessel ode ode

Writing the ode as \begin {align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0\tag {1} \end {align*}

Bessel ode has the form \begin {align*} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0\tag {2} \end {align*}

The generalized form of Bessel ode is given by Bowman (1958) as the following \begin {align*} x^{2} y^{\prime \prime }+\left (1-2 \alpha \right ) x y^{\prime }+\left (\beta ^{2} \gamma ^{2} x^{2 \gamma }-n^{2} \gamma ^{2}+\alpha ^{2}\right ) y = 0\tag {3} \end {align*}

With the standard solution \begin {align*} y&=x^{\alpha } \left (c_{1} \operatorname {BesselJ}\left (n , \beta \,x^{\gamma }\right )+c_{2} \operatorname {BesselY}\left (n , \beta \,x^{\gamma }\right )\right )\tag {4} \end {align*}

Comparing (3) to (1) and solving for \(\alpha ,\beta ,n,\gamma \) gives \begin {align*} \alpha &= 0\\ \beta &= 1\\ n &= -\sqrt {5}\\ \gamma &= 1 \end {align*}

Substituting all the above into (4) gives the solution as \begin {align*} y = c_{1} \operatorname {BesselJ}\left (-\sqrt {5}, x\right )+c_{2} \operatorname {BesselY}\left (-\sqrt {5}, x\right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} \operatorname {BesselJ}\left (-\sqrt {5}, x\right )+c_{2} \operatorname {BesselY}\left (-\sqrt {5}, x\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} \operatorname {BesselJ}\left (-\sqrt {5}, x\right )+c_{2} \operatorname {BesselY}\left (-\sqrt {5}, x\right ) \] Verified OK.

2.45.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+x y^{\prime }+\left (x^{2}-5\right ) y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {\left (x^{2}-5\right ) y}{x^{2}}-\frac {y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {y^{\prime }}{x}+\frac {\left (x^{2}-5\right ) y}{x^{2}}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {1}{x}, P_{3}\left (x \right )=\frac {x^{2}-5}{x^{2}}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=1 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-5 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {d}{d x}y^{\prime }\right )+x y^{\prime }+\left (x^{2}-5\right ) y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..2 \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r +m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -m \\ {} & {} & x^{m}\cdot y=\moverset {\infty }{\munderset {k =m}{\sum }}a_{k -m} x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} \left (r^{2}-5\right ) x^{r}+a_{1} \left (r^{2}+2 r -4\right ) x^{1+r}+\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k} \left (k^{2}+2 k r +r^{2}-5\right )+a_{k -2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r^{2}-5=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{\sqrt {5}, -\sqrt {5}\right \} \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & a_{1} \left (r^{2}+2 r -4\right )=0 \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & a_{1}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k} \left (k^{2}+2 k r +r^{2}-5\right )+a_{k -2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & a_{k +2} \left (\left (k +2\right )^{2}+2 \left (k +2\right ) r +r^{2}-5\right )+a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +2}=-\frac {a_{k}}{k^{2}+2 k r +r^{2}+4 k +4 r -1} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\sqrt {5} \\ {} & {} & a_{k +2}=-\frac {a_{k}}{k^{2}+2 k \sqrt {5}+4+4 k +4 \sqrt {5}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\sqrt {5} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\sqrt {5}}, a_{k +2}=-\frac {a_{k}}{k^{2}+2 k \sqrt {5}+4+4 k +4 \sqrt {5}}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-\sqrt {5} \\ {} & {} & a_{k +2}=-\frac {a_{k}}{k^{2}-2 k \sqrt {5}+4+4 k -4 \sqrt {5}} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =-\sqrt {5} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k -\sqrt {5}}, a_{k +2}=-\frac {a_{k}}{k^{2}-2 k \sqrt {5}+4+4 k -4 \sqrt {5}}, a_{1}=0\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\sqrt {5}}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k -\sqrt {5}}\right ), a_{k +2}=-\frac {a_{k}}{k^{2}+2 k \sqrt {5}+4+4 k +4 \sqrt {5}}, a_{1}=0, b_{k +2}=-\frac {b_{k}}{k^{2}-2 k \sqrt {5}+4+4 k -4 \sqrt {5}}, b_{1}=0\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 19

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-5)*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = c_{1} \operatorname {BesselJ}\left (\sqrt {5}, x\right )+c_{2} \operatorname {BesselY}\left (\sqrt {5}, x\right ) \]

Solution by Mathematica

Time used: 0.08 (sec). Leaf size: 26

DSolve[x^2*y''[x]+x*y'[x]+(x^2-5)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to c_1 \operatorname {BesselJ}\left (\sqrt {5},x\right )+c_2 \operatorname {BesselY}\left (\sqrt {5},x\right ) \]