Internal
problem
ID
[8582]
Book
:
Second
order
enumerated
odes
Section
:
section
2
Problem
number
:
47
Date
solved
:
Sunday, November 10, 2024 at 09:12:33 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )-x y \left (x \right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right ) \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \left (x \right ) \\ {} & {} & y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y \left (x \right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -1 \\ {} & {} & x \cdot y \left (x \right )=\moverset {\infty }{\munderset {k =1}{\sum }}a_{k -1} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d^{3}}{d x^{3}}y \left (x \right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )=\moverset {\infty }{\munderset {k =3}{\sum }}a_{k} k \left (k -1\right ) \left (k -2\right ) x^{k -3} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +3 \\ {} & {} & \frac {d^{3}}{d x^{3}}y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 6 a_{3}+\left (\moverset {\infty }{\munderset {k =1}{\sum }}\left (a_{k +3} \left (k +3\right ) \left (k +2\right ) \left (k +1\right )-a_{k -1}\right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {Each term must be 0}\hspace {3pt} \\ {} & {} & 6 a_{3}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{3}+6 k^{2}+11 k +6\right ) a_{k +3}-a_{k -1}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & \left (\left (k +1\right )^{3}+6 \left (k +1\right )^{2}+11 k +17\right ) a_{k +4}-a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y \left (x \right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=\frac {a_{k}}{k^{3}+9 k^{2}+26 k +24}, 6 a_{3}=0\right ] \end {array} \]
Maple dsolve solution
Solving time : 0.013
(sec)
Leaf size : 45
dsolve(diff(diff(diff(y(x),x),x),x)-x*y(x) = 0,
y(x),singsol=all)
\[
y = c_{1} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {1}{2}, \frac {3}{4}\right ], \frac {x^{4}}{64}\right )+c_{2} x \operatorname {hypergeom}\left (\left [\right ], \left [\frac {3}{4}, \frac {5}{4}\right ], \frac {x^{4}}{64}\right )+c_3 \,x^{2} \operatorname {hypergeom}\left (\left [\right ], \left [\frac {5}{4}, \frac {3}{2}\right ], \frac {x^{4}}{64}\right )
\]
Mathematica DSolve solution
Solving time : 0.012
(sec)
Leaf size : 76
DSolve[{D[y[x],{x,3}]-x*y[x]==0,{}},
y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to c_1 \, _0F_2\left (;\frac {1}{2},\frac {3}{4};\frac {x^4}{64}\right )+\frac {1}{8} x \left ((2+2 i) c_2 \, _0F_2\left (;\frac {3}{4},\frac {5}{4};\frac {x^4}{64}\right )+i c_3 x \, _0F_2\left (;\frac {5}{4},\frac {3}{2};\frac {x^4}{64}\right )\right )
\]