13.2 problem 2

13.2.1 Maple step by step solution

Internal problem ID [11496]
Internal file name [OUTPUT/10479_Thursday_May_18_2023_04_20_40_AM_49692987/index.tex]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section: Chapter 2, Second order linear equations. Section 2.4.3 Reduction of order. Exercises page 125
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of_variable_on_y_method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

[_Hermite]

\[ \boxed {x^{\prime \prime }-x^{\prime } t +x=0} \] Given that one solution of the ode is \begin {align*} x_1 &= t \end {align*}

Given one basis solution \(x_{1}\left (t \right )\), then the second basis solution is given by \[ x_{2}\left (t \right ) = x_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d t \right )}}{x_{1}^{2}}d t \right ) \] Where \(p(x)\) is the coefficient of \(x^{\prime }\) when the ode is written in the normal form \[ x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = f \left (t \right ) \] Looking at the ode to solve shows that \[ p \left (t \right ) = -t \] Therefore \begin{align*} x_{2}\left (t \right ) &= t \left (\int \frac {{\mathrm e}^{-\left (\int -t d t \right )}}{t^{2}}d t \right ) \\ x_{2}\left (t \right ) &= t \int \frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t^{2}} , dt \\ x_{2}\left (t \right ) &= t \left (\int \frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t^{2}}d t \right ) \\ x_{2}\left (t \right ) &= t \left (-\frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t}-\frac {i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, t}{2}\right )}{2}\right ) \\ \end{align*} Hence the solution is \begin{align*} x &= c_{1} x_{1}\left (t \right )+c_{2} x_{2}\left (t \right ) \\ &= c_{1} t +c_{2} t \left (-\frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t}-\frac {i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, t}{2}\right )}{2}\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} x &= c_{1} t +c_{2} t \left (-\frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t}-\frac {i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, t}{2}\right )}{2}\right ) \\ \end{align*}

Verification of solutions

\[ x = c_{1} t +c_{2} t \left (-\frac {{\mathrm e}^{\frac {t^{2}}{2}}}{t}-\frac {i \sqrt {\pi }\, \sqrt {2}\, \operatorname {erf}\left (\frac {i \sqrt {2}\, t}{2}\right )}{2}\right ) \] Verified OK.

13.2.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{\prime \prime }-x^{\prime } t +x=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & x^{\prime \prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} x \\ {} & {} & x=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} t \cdot x^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & t \cdot x^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \,t^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{\prime \prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) t^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & x^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) t^{k} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )-a_{k} \left (k -1\right )\right ) t^{k}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+3 k +2\right ) a_{k +2}-a_{k} \left (k -1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [x=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} t^{k}, a_{k +2}=\frac {a_{k} \left (k -1\right )}{k^{2}+3 k +2}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 38

dsolve([diff(x(t),t$2)-t*diff(x(t),t)+x(t)=0,t],singsol=all)
 

\[ x \left (t \right ) = c_{2} {\mathrm e}^{\frac {t^{2}}{2}}+\frac {\left (i c_{2} \sqrt {2}\, \sqrt {\pi }\, \operatorname {erf}\left (\frac {i \sqrt {2}\, t}{2}\right )+2 c_{1} \right ) t}{2} \]

Solution by Mathematica

Time used: 0.09 (sec). Leaf size: 61

DSolve[x''[t]-t*x'[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]
 

\[ x(t)\to -\sqrt {\frac {\pi }{2}} c_2 \sqrt {t^2} \text {erfi}\left (\frac {\sqrt {t^2}}{\sqrt {2}}\right )+c_2 e^{\frac {t^2}{2}}+\sqrt {2} c_1 t \]