14.3 problem 1(c)

14.3.1 Maple step by step solution

Internal problem ID [11502]
Internal file name [OUTPUT/10485_Thursday_May_18_2023_04_20_49_AM_799892/index.tex]

Book: A First Course in Differential Equations by J. David Logan. Third Edition. Springer-Verlag, NY. 2015.
Section: Chapter 2, Second order linear equations. Section 2.5 Higher order equations. Exercises page 130
Problem number: 1(c).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

\[ \boxed {x^{\prime \prime \prime }+x^{\prime \prime }=0} \] The characteristic equation is \[ \lambda ^{3}+\lambda ^{2} = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= -1\\ \lambda _2 &= 0\\ \lambda _3 &= 0 \end {align*}

Therefore the homogeneous solution is \[ x_h(t)=c_{1} {\mathrm e}^{-t}+c_{2} +c_{3} t \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} x_1 &= {\mathrm e}^{-t}\\ x_2 &= 1\\ x_3 &= t \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} x &= c_{1} {\mathrm e}^{-t}+c_{2} +c_{3} t \\ \end{align*}

Verification of solutions

\[ x = c_{1} {\mathrm e}^{-t}+c_{2} +c_{3} t \] Verified OK.

14.3.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{\prime \prime \prime }+x^{\prime \prime }=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & x^{\prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{1}\left (t \right ) \\ {} & {} & x_{1}\left (t \right )=x \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{2}\left (t \right ) \\ {} & {} & x_{2}\left (t \right )=x^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{3}\left (t \right ) \\ {} & {} & x_{3}\left (t \right )=x^{\prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} x_{3}^{\prime }\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & x_{3}^{\prime }\left (t \right )=-x_{3}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [x_{2}\left (t \right )=x_{1}^{\prime }\left (t \right ), x_{3}\left (t \right )=x_{2}^{\prime }\left (t \right ), x_{3}^{\prime }\left (t \right )=-x_{3}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{c} x_{1}\left (t \right ) \\ x_{2}\left (t \right ) \\ x_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}^{\prime }\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}^{\prime }\left (t \right )=A \cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{1}={\mathrm e}^{-t}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{2}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{3}=\left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=c_{1} {\moverset {\rightarrow }{x}}_{1}+c_{2} {\moverset {\rightarrow }{x}}_{2}+c_{3} {\moverset {\rightarrow }{x}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=c_{1} {\mathrm e}^{-t}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{2} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & x=c_{1} {\mathrm e}^{-t}+c_{2} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 15

dsolve(diff(x(t),t$3)+diff(x(t),t$2)=0,x(t), singsol=all)
 

\[ x \left (t \right ) = c_{1} +c_{2} t +c_{3} {\mathrm e}^{-t} \]

Solution by Mathematica

Time used: 0.039 (sec). Leaf size: 20

DSolve[x'''[t]+x''[t]==0,x[t],t,IncludeSingularSolutions -> True]
 

\[ x(t)\to c_1 e^{-t}+c_3 t+c_2 \]