36.7 problem Ex 7

36.7.1 Maple step by step solution

Internal problem ID [11328]
Internal file name [OUTPUT/10314_Tuesday_December_27_2022_04_06_19_AM_27016616/index.tex]

Book: An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section: Chapter IX, Miscellaneous methods for solving equations of higher order than first. Article 60. Exact equation. Integrating factor. Page 139
Problem number: Ex 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {x^{2} \left (-x^{3}+1\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y=0} \]

36.7.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (-x^{5}+x^{2}\right ) y^{\prime \prime }-x^{3} y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {2 y}{x^{2} \left (x^{3}-1\right )}-\frac {x y^{\prime }}{x^{3}-1} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {x y^{\prime }}{x^{3}-1}+\frac {2 y}{x^{2} \left (x^{3}-1\right )}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x}{x^{3}-1}, P_{3}\left (x \right )=\frac {2}{x^{2} \left (x^{3}-1\right )}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-2 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & y^{\prime \prime } x^{2} \left (x^{3}-1\right )+x^{3} y^{\prime }+2 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{3}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{3}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r +2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -2 \\ {} & {} & x^{3}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k -2} \left (k -2+r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =2..5 \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} \left (1+r \right ) \left (-2+r \right ) x^{r}-a_{1} \left (2+r \right ) \left (-1+r \right ) x^{1+r}+\left (-a_{2} \left (3+r \right ) r +a_{0} r \right ) x^{2+r}+\left (\moverset {\infty }{\munderset {k =3}{\sum }}\left (-a_{k} \left (k +r +1\right ) \left (k -2+r \right )+a_{k -2} \left (k -2+r \right )+a_{k -3} \left (k -3+r \right ) \left (k -4+r \right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -\left (1+r \right ) \left (-2+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{-1, 2\right \} \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [-a_{1} \left (2+r \right ) \left (-1+r \right )=0, -a_{2} \left (3+r \right ) r +a_{0} r =0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{1}=0, a_{2}=\frac {a_{0}}{3+r}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -a_{k} \left (k +r +1\right ) \left (k -2+r \right )+a_{k -2} \left (k -2+r \right )+a_{k -3} \left (k -3+r \right ) \left (k -4+r \right )=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +3 \\ {} & {} & -a_{k +3} \left (k +4+r \right ) \left (k +r +1\right )+a_{k +1} \left (k +r +1\right )+a_{k} \left (k +r \right ) \left (k +r -1\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +3}=\frac {k^{2} a_{k}+2 k r a_{k}+r^{2} a_{k}-k a_{k}+k a_{k +1}-r a_{k}+r a_{k +1}+a_{k +1}}{\left (k +4+r \right ) \left (k +r +1\right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =-1 \\ {} & {} & a_{k +3}=\frac {k^{2} a_{k}-3 k a_{k}+k a_{k +1}+2 a_{k}}{\left (k +3\right ) k} \\ \bullet & {} & \textrm {Series not valid for}\hspace {3pt} r =-1\hspace {3pt}\textrm {, division by}\hspace {3pt} 0\hspace {3pt}\textrm {in the recursion relation at}\hspace {3pt} k =0 \\ {} & {} & a_{k +3}=\frac {k^{2} a_{k}-3 k a_{k}+k a_{k +1}+2 a_{k}}{\left (k +3\right ) k} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =2 \\ {} & {} & a_{k +3}=\frac {k^{2} a_{k}+3 k a_{k}+k a_{k +1}+2 a_{k}+3 a_{k +1}}{\left (k +6\right ) \left (k +3\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =2 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2}, a_{k +3}=\frac {k^{2} a_{k}+3 k a_{k}+k a_{k +1}+2 a_{k}+3 a_{k +1}}{\left (k +6\right ) \left (k +3\right )}, a_{1}=0, a_{2}=\frac {a_{0}}{5}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Whittaker 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
   -> hypergeometric 
      -> heuristic approach 
      -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
   -> Mathieu 
      -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
trying a solution in terms of MeijerG functions 
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   trying differential order: 2; exact nonlinear 
   trying symmetries linear in x and y(x) 
   trying to convert to a linear ODE with constant coefficients 
   trying 2nd order, integrating factor of the form mu(x,y) 
   -> Trying a solution in terms of special functions: 
      -> Bessel 
      -> elliptic 
      -> Legendre 
      -> Whittaker 
         -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      -> hypergeometric 
         -> heuristic approach 
         -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
      -> Mathieu 
         -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
      trying 2nd order exact linear 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
      trying to convert to an ODE of Bessel type 
   trying to convert to an ODE of Bessel type 
   -> trying reduction of order to Riccati 
      trying Riccati sub-methods: 
         -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
         -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
         -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
--- Trying Lie symmetry methods, 2nd order --- 
`, `-> Computing symmetries using: way = 3`[0, y]
 

Solution by Maple

dsolve(x^2*(1-x^3)*diff(y(x),x$2)-x^3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[x^2*(1-x^3)*y''[x]-x^3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

Not solved