8.3 problem 2

8.3.1 Existence and uniqueness analysis
8.3.2 Maple step by step solution

Internal problem ID [11714]
Internal file name [OUTPUT/11724_Thursday_April_11_2024_08_49_07_PM_26398801/index.tex]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section: Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 113
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime \prime }+y^{\prime } x +y x^{2}=0} \] With initial conditions \begin {align*} [y \left (1\right ) = 0, y^{\prime }\left (1\right ) = 0] \end {align*}

8.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime \prime } + p(x)y^{\prime } + q(x) y &= F \end {align*}

Where here \begin {align*} p(x) &=x\\ q(x) &=x^{2}\\ F &=0 \end {align*}

Hence the ode is \begin {align*} y^{\prime \prime }+y^{\prime } x +y x^{2} = 0 \end {align*}

The domain of \(p(x)=x\) is \[ \{-\infty

8.3.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y^{\prime }+y^{\prime } x +y x^{2}=0, y \left (1\right )=0, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}1\right \}}}}=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{2}\cdot y\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x^{2}\cdot y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k -2 \\ {} & {} & x^{2}\cdot y=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k -2} x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \,x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & 2 a_{2}+\left (6 a_{3}+a_{1}\right ) x +\left (\moverset {\infty }{\munderset {k =2}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )+a_{k} k +a_{k -2}\right ) x^{k}\right )=0 \\ \bullet & {} & \textrm {The coefficients of each power of}\hspace {3pt} x \hspace {3pt}\textrm {must be 0}\hspace {3pt} \\ {} & {} & \left [2 a_{2}=0, 6 a_{3}+a_{1}=0\right ] \\ \bullet & {} & \textrm {Solve for the dependent coefficient(s)}\hspace {3pt} \\ {} & {} & \left \{a_{2}=0, a_{3}=-\frac {a_{1}}{6}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k^{2}+3 k +2\right ) a_{k +2}+a_{k} k +a_{k -2}=0 \\ \bullet & {} & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \left (\left (k +2\right )^{2}+3 k +8\right ) a_{k +4}+a_{k +2} \left (k +2\right )+a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +4}=-\frac {k a_{k +2}+a_{k}+2 a_{k +2}}{k^{2}+7 k +12}, a_{2}=0, a_{3}=-\frac {a_{1}}{6}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   -> elliptic 
   -> Legendre 
   -> Kummer 
      -> hyper3: Equivalence to 1F1 under a power @ Moebius 
      <- hyper3 successful: received ODE is equivalent to the 1F1 ODE 
   <- Kummer successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.641 (sec). Leaf size: 5

dsolve([diff(y(x),x$2)+x*diff(y(x),x)+x^2*y(x)=0,y(1) = 0, D(y)(1) = 0],y(x), singsol=all)
 

\[ y \left (x \right ) = 0 \]

Solution by Mathematica

Time used: 0.101 (sec). Leaf size: 6

DSolve[{y''[x]+x*y'[x]+x^2*y[x]==0,{y[1]==0,y'[1]==0}},y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ y(x)\to 0 \]