2.8 problem 5

2.8.1 Maple step by step solution

Internal problem ID [11591]
Internal file name [OUTPUT/10574_Thursday_May_18_2023_05_56_39_PM_4049348/index.tex]

Book: Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section: Chapter 1, section 1.3. Exercises page 22
Problem number: 5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type

[[_3rd_order, _with_linear_symmetries]]

\[ \boxed {x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y=0} \] With initial conditions \begin {align*} [y \left (2\right ) = 0, y^{\prime }\left (2\right ) = 2, y^{\prime \prime }\left (2\right ) = 6] \end {align*}

This is Euler ODE of higher order. Let \(y = x^{\lambda }\). Hence \begin {align*} y^{\prime } &= \lambda \,x^{\lambda -1}\\ y^{\prime \prime } &= \lambda \left (\lambda -1\right ) x^{\lambda -2}\\ y^{\prime \prime \prime } &= \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3} \end {align*}

Substituting these back into \[ x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 y^{\prime } x -6 y = 0 \] gives \[ 6 x \lambda \,x^{\lambda -1}-3 x^{2} \lambda \left (\lambda -1\right ) x^{\lambda -2}+x^{3} \lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda -3}-6 x^{\lambda } = 0 \] Which simplifies to \[ 6 \lambda \,x^{\lambda }-3 \lambda \left (\lambda -1\right ) x^{\lambda }+\lambda \left (\lambda -1\right ) \left (\lambda -2\right ) x^{\lambda }-6 x^{\lambda } = 0 \] And since \(x^{\lambda }\neq 0\) then dividing through by \(x^{\lambda }\), the above becomes

\[ 6 \lambda -3 \lambda \left (\lambda -1\right )+\lambda \left (\lambda -1\right ) \left (\lambda -2\right )-6 = 0 \] Simplifying gives the characteristic equation as \[ \lambda ^{3}-6 \lambda ^{2}+11 \lambda -6 = 0 \] Solving the above gives the following roots \begin {align*} \lambda _1 &= 1\\ \lambda _2 &= 2\\ \lambda _3 &= 3 \end {align*}

This table summarises the result

root multiplicity type of root
\(1\) \(1\) real root
\(2\) \(1\) real root
\(3\) \(1\) real root

The solution is generated by going over the above table. For each real root \(\lambda \) of multiplicity one generates a \(c_1x^{\lambda }\) basis solution. Each real root of multiplicty two, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) basis solutions. Each real root of multiplicty three, generates \(c_1x^{\lambda }\) and \(c_2x^{\lambda } \ln \left (x \right )\) and \(c_3x^{\lambda } \ln \left (x \right )^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta \) of multiplicity one generates \(x^{\alpha } \left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity two generates \(\ln \left (x \right ) x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And each complex root \(\alpha \pm i \beta \) of multiplicity three generates \(\ln \left (x \right )^{2} x^{\alpha }\left (c_1\cos (\beta \ln \left (x \right ))+c_2\sin (\beta \ln \left (x \right ))\right )\) basis solutions. And so on. Using the above show that the solution is

\[ y = c_{3} x^{3}+c_{2} x^{2}+c_{1} x \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= x\\ y_2 &= x^{2}\\ y_3 &= x^{3} \end {align*}

Initial conditions are used to solve for the constants of integration.

Looking at the above solution \begin {align*} y = c_{3} x^{3}+c_{2} x^{2}+c_{1} x \tag {1} \end {align*}

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y = 0\) and \(x = 2\) in the above gives \begin {align*} 0 = 8 c_{3} +4 c_{2} +2 c_{1}\tag {1A} \end {align*}

Taking derivative of the solution gives \begin {align*} y^{\prime } = 3 c_{3} x^{2}+2 c_{2} x +c_{1} \end {align*}

substituting \(y^{\prime } = 2\) and \(x = 2\) in the above gives \begin {align*} 2 = 12 c_{3} +4 c_{2} +c_{1}\tag {2A} \end {align*}

Taking two derivatives of the solution gives \begin {align*} y^{\prime \prime } = 6 c_{3} x +2 c_{2} \end {align*}

substituting \(y^{\prime \prime } = 6\) and \(x = 2\) in the above gives \begin {align*} 6 = 12 c_{3} +2 c_{2}\tag {3A} \end {align*}

Equations {1A,2A,3A} are now solved for \(\{c_{1}, c_{2}, c_{3}\}\). Solving for the constants gives \begin {align*} c_{1}&=2\\ c_{2}&=-3\\ c_{3}&=1 \end {align*}

Substituting these values back in above solution results in \begin {align*} y = x^{3}-3 x^{2}+2 x \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= x^{3}-3 x^{2}+2 x \\ \end{align*}

Figure 33: Solution plot

Verification of solutions

\[ y = x^{3}-3 x^{2}+2 x \] Verified OK.

2.8.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime \prime \prime } x^{3}-3 y^{\prime \prime } x^{2}+6 y^{\prime } x -6 y=0, y \left (2\right )=0, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}2\right \}}}}=2, y^{\prime \prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}2\right \}}}}=6\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \bullet & {} & \textrm {Isolate 3rd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {6 y}{x^{3}}+\frac {3 \left (y^{\prime \prime } x -2 y^{\prime }\right )}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }-\frac {3 y^{\prime \prime }}{x}+\frac {6 y^{\prime }}{x^{2}}-\frac {6 y}{x^{3}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime } x^{3}-3 y^{\prime \prime } x^{2}+6 y^{\prime } x -6 y=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+t^{\prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{3}+3 t^{\prime }\left (x \right ) t^{\prime \prime }\left (x \right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+t^{\prime \prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & \left (\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right ) x^{3}-3 \left (\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}\right ) x^{2}+6 \frac {d}{d t}y \left (t \right )-6 y \left (t \right )=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d t^{3}}y \left (t \right )-6 \frac {d^{2}}{d t^{2}}y \left (t \right )+11 \frac {d}{d t}y \left (t \right )-6 y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{3}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{3}\left (t \right )=6 y_{3}\left (t \right )-11 y_{2}\left (t \right )+6 y_{1}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), \frac {d}{d t}y_{3}\left (t \right )=6 y_{3}\left (t \right )-11 y_{2}\left (t \right )+6 y_{1}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ], \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ], \left [3, \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{2 t}\cdot \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [3, \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{3 t}\cdot \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]+c_{2} {\mathrm e}^{2 t}\cdot \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]+c_{3} {\mathrm e}^{3 t}\cdot \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=c_{1} {\mathrm e}^{t}+\frac {c_{2} {\mathrm e}^{2 t}}{4}+\frac {c_{3} {\mathrm e}^{3 t}}{9} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=c_{1} x +\frac {1}{4} c_{2} x^{2}+\frac {1}{9} c_{3} x^{3} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y \left (2\right )=0 \\ {} & {} & 0=2 c_{1} +c_{2} +\frac {8 c_{3}}{9} \\ \bullet & {} & \textrm {Calculate the 1st derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=c_{1} +\frac {1}{2} c_{2} x +\frac {1}{3} c_{3} x^{2} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}2\right \}}}}=2 \\ {} & {} & 2=c_{1} +c_{2} +\frac {4 c_{3}}{3} \\ \bullet & {} & \textrm {Calculate the 2nd derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {c_{2}}{2}+\frac {2 c_{3} x}{3} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y^{\prime \prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}2\right \}}}}=6 \\ {} & {} & 6=\frac {c_{2}}{2}+\frac {4 c_{3}}{3} \\ \bullet & {} & \textrm {Solve for the unknown coefficients}\hspace {3pt} \\ {} & {} & \left \{c_{1} =2, c_{2} =-12, c_{3} =9, x =x \right \} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=x^{3}-3 x^{2}+2 x \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 16

dsolve([x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+6*x*diff(y(x),x)-6*y(x)=0,y(2) = 0, D(y)(2) = 2, (D@@2)(y)(2) = 6],y(x), singsol=all)
 

\[ y \left (x \right ) = x^{3}-3 x^{2}+2 x \]

Solution by Mathematica

Time used: 0.013 (sec). Leaf size: 15

DSolve[{x^3*y'''[x]-3*x^2*y''[x]+6*x*y'[x]-6*y[x]==0,{y[2]==0,y'[2]==2,y''[2]==6}},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to x \left (x^2-3 x+2\right ) \]