4.4 problem 25

4.4.1 Solving as riccati ode
4.4.2 Maple step by step solution

Internal problem ID [10432]
Internal file name [OUTPUT/9380_Monday_June_06_2022_02_20_55_PM_76225887/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.3-2. Equations with power and exponential functions
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-{\mathrm e}^{\lambda x} y^{2}-a \,x^{n} y=a \lambda \,x^{n} {\mathrm e}^{-\lambda x}} \]

4.4.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= {\mathrm e}^{\lambda x} y^{2}+x^{n} a y +a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = {\mathrm e}^{\lambda x} y^{2}+x^{n} a y +a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=a \lambda \,x^{n} {\mathrm e}^{-\lambda x}\), \(f_1(x)=x^{n} a\) and \(f_2(x)={\mathrm e}^{\lambda x}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{{\mathrm e}^{\lambda x} u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=\lambda \,{\mathrm e}^{\lambda x}\\ f_1 f_2 &={\mathrm e}^{\lambda x} x^{n} a\\ f_2^2 f_0 &={\mathrm e}^{2 \lambda x} a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} {\mathrm e}^{\lambda x} u^{\prime \prime }\left (x \right )-\left ({\mathrm e}^{\lambda x} x^{n} a +\lambda \,{\mathrm e}^{\lambda x}\right ) u^{\prime }\left (x \right )+{\mathrm e}^{2 \lambda x} a \lambda \,x^{n} {\mathrm e}^{-\lambda x} u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = {\mathrm e}^{\int \frac {\left (\int {\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}d x \right ) \lambda -c_{1} \lambda +{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}}d x} c_{2} \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {c_{2} \left (\left (\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x \right ) \lambda -c_{1} \lambda +{\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}\right ) {\mathrm e}^{\int \frac {\left (\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x \right ) \lambda -c_{1} \lambda +{\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}}d x}}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}} \] Using the above in (1) gives the solution \[ y = -\frac {\left (\left (\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x \right ) \lambda -c_{1} \lambda +{\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}\right ) {\mathrm e}^{\int \frac {\left (\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x \right ) \lambda -c_{1} \lambda +{\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}}d x} {\mathrm e}^{-\lambda x} {\mathrm e}^{\int -\frac {\int \lambda \,{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}d x +{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}-c_{1} \lambda }{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}}d x}}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{1}} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {{\mathrm e}^{-\lambda x} \left (\left (\int {\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}d x \right ) \lambda -\lambda c_{3} +{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}\right )}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{3}} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {{\mathrm e}^{-\lambda x} \left (\left (\int {\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}d x \right ) \lambda -\lambda c_{3} +{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}\right )}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{3}} \\ \end{align*}

Verification of solutions

\[ y = -\frac {{\mathrm e}^{-\lambda x} \left (\left (\int {\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}d x \right ) \lambda -\lambda c_{3} +{\mathrm e}^{\frac {a \,x^{1+n}-\lambda x \left (1+n \right )}{1+n}}\right )}{\int {\mathrm e}^{\frac {x \left (x^{n} a -\lambda \left (1+n \right )\right )}{1+n}}d x -c_{3}} \] Verified OK.

4.4.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-{\mathrm e}^{\lambda x} y^{2}-a \,x^{n} y=a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }={\mathrm e}^{\lambda x} y^{2}+a \,x^{n} y+a \lambda \,x^{n} {\mathrm e}^{-\lambda x} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (x^n*a+lambda)*(diff(y(x), x))-exp(lambda*x)*a*lambda*x^n*exp(-lambda* 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying an equivalence, under non-integer power transformations, 
         to LODEs admitting Liouvillian solutions. 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         -> Mathieu 
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Trying an equivalence, under non-integer power transformations, 
            to LODEs admitting Liouvillian solutions. 
         -> Trying a solution in terms of special functions: 
            -> Bessel 
            -> elliptic 
            -> Legendre 
            -> Kummer 
               -> hyper3: Equivalence to 1F1 under a power @ Moebius 
            -> hypergeometric 
               -> heuristic approach 
               -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
            -> Mathieu 
               -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(exp(lambda*x)*y(x)^2+y(x)+a*x^n*y(x)*x+x^2*a*lambda*x^n*exp(-lambda*x))/x, y(x), 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6`[0, exp(-1/(n+1)*a*x^(n+1)+2*x*lambda)*(y+lambda/exp(x*lambda))^2]
 

Solution by Maple

Time used: 0.016 (sec). Leaf size: 89

dsolve(diff(y(x),x)=exp(lambda*x)*y(x)^2+a*x^(n)*y(x)+a*lambda*x^n*exp(-lambda*x),y(x), singsol=all)
 

\[ y \left (x \right ) = -\frac {{\mathrm e}^{-x \lambda } \left (\left (\int {\mathrm e}^{\frac {x^{n +1} a -x \lambda \left (n +1\right )}{n +1}}d x \right ) \lambda +\lambda c_{1} +{\mathrm e}^{\frac {x^{n +1} a -x \lambda \left (n +1\right )}{n +1}}\right )}{c_{1} +\int {\mathrm e}^{\frac {x \left (a \,x^{n}-\left (n +1\right ) \lambda \right )}{n +1}}d x} \]

Solution by Mathematica

Time used: 1.93 (sec). Leaf size: 254

DSolve[y'[x]==Exp[\[Lambda]*x]*y[x]^2+a*x^(n)*y[x]+a*\[Lambda]*x^n*Exp[-\[Lambda]*x],y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {e^{\frac {a x^{n+1}}{n+1}}}{\left (\lambda +e^{x \lambda } K[2]\right )^2}-\int _1^x\left (\frac {2 e^{\frac {a K[1]^{n+1}}{n+1}} \left (a \lambda K[1]^n+a e^{\lambda K[1]} K[2] K[1]^n+e^{2 \lambda K[1]} K[2]^2\right )}{\left (\lambda +e^{\lambda K[1]} K[2]\right )^3}-\frac {e^{\frac {a K[1]^{n+1}}{n+1}-\lambda K[1]} \left (a e^{\lambda K[1]} K[1]^n+2 e^{2 \lambda K[1]} K[2]\right )}{\left (\lambda +e^{\lambda K[1]} K[2]\right )^2}\right )dK[1]\right )dK[2]+\int _1^x-\frac {e^{\frac {a K[1]^{n+1}}{n+1}-\lambda K[1]} \left (a \lambda K[1]^n+a e^{\lambda K[1]} y(x) K[1]^n+e^{2 \lambda K[1]} y(x)^2\right )}{\left (\lambda +e^{\lambda K[1]} y(x)\right )^2}dK[1]=c_1,y(x)\right ] \]