8.13 problem 22

8.13.1 Solving as riccati ode
8.13.2 Maple step by step solution

Internal problem ID [10496]
Internal file name [OUTPUT/9444_Monday_June_06_2022_02_32_39_PM_53703409/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.5-2
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {\left (a \ln \left (x \right )+b \right ) y^{\prime }-y^{2}-c \ln \left (x \right )^{n} y=-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}} \]

8.13.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= \frac {y^{2}+c \ln \left (x \right )^{n} y -\lambda ^{2}+\lambda c \ln \left (x \right )^{n}}{a \ln \left (x \right )+b} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = \frac {\lambda c \ln \left (x \right )^{n}}{a \ln \left (x \right )+b}+\frac {c \ln \left (x \right )^{n} y}{a \ln \left (x \right )+b}-\frac {\lambda ^{2}}{a \ln \left (x \right )+b}+\frac {y^{2}}{a \ln \left (x \right )+b} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=\frac {-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}}{a \ln \left (x \right )+b}\), \(f_1(x)=\frac {c \ln \left (x \right )^{n}}{a \ln \left (x \right )+b}\) and \(f_2(x)=\frac {1}{a \ln \left (x \right )+b}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{\frac {u}{a \ln \left (x \right )+b}} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=-\frac {a}{\left (a \ln \left (x \right )+b \right )^{2} x}\\ f_1 f_2 &=\frac {c \ln \left (x \right )^{n}}{\left (a \ln \left (x \right )+b \right )^{2}}\\ f_2^2 f_0 &=\frac {-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}}{\left (a \ln \left (x \right )+b \right )^{3}} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} \frac {u^{\prime \prime }\left (x \right )}{a \ln \left (x \right )+b}-\left (-\frac {a}{\left (a \ln \left (x \right )+b \right )^{2} x}+\frac {c \ln \left (x \right )^{n}}{\left (a \ln \left (x \right )+b \right )^{2}}\right ) u^{\prime }\left (x \right )+\frac {\left (-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}\right ) u \left (x \right )}{\left (a \ln \left (x \right )+b \right )^{3}} &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \operatorname {DESol}\left (\left \{\textit {\_Y}^{\prime \prime }\left (x \right )-\frac {\left (-\frac {a}{x}+\ln \left (x \right )^{n} c \right ) \textit {\_Y}^{\prime }\left (x \right )}{a \ln \left (x \right )+b}+\frac {\left (-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}\right ) \textit {\_Y} \left (x \right )}{\left (a \ln \left (x \right )+b \right )^{2}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y}^{\prime \prime }\left (x \right )-\frac {\left (-\frac {a}{x}+\ln \left (x \right )^{n} c \right ) \textit {\_Y}^{\prime }\left (x \right )}{a \ln \left (x \right )+b}+\frac {\left (-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}\right ) \textit {\_Y} \left (x \right )}{\left (a \ln \left (x \right )+b \right )^{2}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] Using the above in (1) gives the solution \[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y}^{\prime \prime }\left (x \right )-\frac {\left (-\frac {a}{x}+\ln \left (x \right )^{n} c \right ) \textit {\_Y}^{\prime }\left (x \right )}{a \ln \left (x \right )+b}+\frac {\left (-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}\right ) \textit {\_Y} \left (x \right )}{\left (a \ln \left (x \right )+b \right )^{2}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) \left (a \ln \left (x \right )+b \right )}{\operatorname {DESol}\left (\left \{\textit {\_Y}^{\prime \prime }\left (x \right )-\frac {\left (-\frac {a}{x}+\ln \left (x \right )^{n} c \right ) \textit {\_Y}^{\prime }\left (x \right )}{a \ln \left (x \right )+b}+\frac {\left (-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}\right ) \textit {\_Y} \left (x \right )}{\left (a \ln \left (x \right )+b \right )^{2}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) \left (a \ln \left (x \right )+b \right )}{\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) \left (a \ln \left (x \right )+b \right )}{\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \\ \end{align*}

Verification of solutions

\[ y = -\frac {\left (\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )\right ) \left (a \ln \left (x \right )+b \right )}{\operatorname {DESol}\left (\left \{\frac {-a c x \ln \left (x \right )^{1+n} \textit {\_Y}^{\prime }\left (x \right )+\textit {\_Y}^{\prime \prime }\left (x \right ) \left (a \ln \left (x \right )+b \right )^{2} x +\left (-b \ln \left (x \right )^{n} c x +\left (a \ln \left (x \right )+b \right ) a \right ) \textit {\_Y}^{\prime }\left (x \right )+\lambda \left (\ln \left (x \right )^{n} c -\lambda \right ) \textit {\_Y} \left (x \right ) x}{\left (a \ln \left (x \right )+b \right )^{2} x}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Verified OK.

8.13.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (a \ln \left (x \right )+b \right ) y^{\prime }-y^{2}-c \ln \left (x \right )^{n} y=-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n}}{a \ln \left (x \right )+b} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (ln(x)^n*c*x-a)*(diff(y(x), x))/((ln(x)*a+b)*x)-lambda*(ln(x)^n*c-lamb 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            checking if the LODE is missing y 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
               trying a symmetry of the form [xi=0, eta=F(x)] 
               trying 2nd order exact linear 
               trying symmetries linear in x and y(x) 
               trying to convert to a linear ODE with constant coefficients 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2/(ln(x)*a+b)+y(x)+c*ln(x)^n*y(x)*x/(ln(x)*a+b)+x^2*(lambda*c*ln(x)^n/(ln(x 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   <- symmetry pattern of the form [0, F(x)*G(y)] successful 
   <- Riccati with symmetry pattern of the form [0,F(x)*G(y)] successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 107

dsolve((a*ln(x)+b)*diff(y(x),x)=y(x)^2+c*(ln(x))^n*y(x)-lambda^2+lambda*c*(ln(x))^n,y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {-\left (\int \frac {{\mathrm e}^{\int \frac {\ln \left (x \right )^{n} c -2 \lambda }{a \ln \left (x \right )+b}d x}}{a \ln \left (x \right )+b}d x \right ) \lambda -\lambda c_{1} -{\mathrm e}^{\int \frac {\ln \left (x \right )^{n} c -2 \lambda }{a \ln \left (x \right )+b}d x}}{c_{1} +\int \frac {{\mathrm e}^{\int \frac {\ln \left (x \right )^{n} c -2 \lambda }{a \ln \left (x \right )+b}d x}}{a \ln \left (x \right )+b}d x} \]

Solution by Mathematica

Time used: 5.348 (sec). Leaf size: 275

DSolve[(a*Log[x]+b)*y'[x]==y[x]^2+c*(Log[x])^n*y[x]-\[Lambda]^2+\[Lambda]*c*(Log[x])^n,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^x-\frac {\exp \left (-\int _1^{K[2]}\frac {2 \lambda -c \log ^n(K[1])}{b+a \log (K[1])}dK[1]\right ) \left (c \log ^n(K[2])-\lambda +y(x)\right )}{c n (b+a \log (K[2])) (\lambda +y(x))}dK[2]+\int _1^{y(x)}\left (\frac {\exp \left (-\int _1^x\frac {2 \lambda -c \log ^n(K[1])}{b+a \log (K[1])}dK[1]\right )}{c n (\lambda +K[3])^2}-\int _1^x\left (\frac {\exp \left (-\int _1^{K[2]}\frac {2 \lambda -c \log ^n(K[1])}{b+a \log (K[1])}dK[1]\right ) \left (c \log ^n(K[2])-\lambda +K[3]\right )}{c n (\lambda +K[3])^2 (b+a \log (K[2]))}-\frac {\exp \left (-\int _1^{K[2]}\frac {2 \lambda -c \log ^n(K[1])}{b+a \log (K[1])}dK[1]\right )}{c n (\lambda +K[3]) (b+a \log (K[2]))}\right )dK[2]\right )dK[3]=c_1,y(x)\right ] \]