11.8 problem 34

11.8.1 Solving as riccati ode
11.8.2 Maple step by step solution

Internal problem ID [10531]
Internal file name [OUTPUT/9479_Monday_June_06_2022_02_48_09_PM_7980074/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number: 34.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-a \tan \left (\lambda x \right )^{n} y^{2}=-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda } \]

11.8.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n} \tan \left (\lambda x \right )^{2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \), \(f_1(x)=0\) and \(f_2(x)=a \tan \left (\lambda x \right )^{n}\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{a \tan \left (\lambda x \right )^{n} u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=\frac {a \tan \left (\lambda x \right )^{n} n \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )}{\tan \left (\lambda x \right )}\\ f_1 f_2 &=0\\ f_2^2 f_0 &=a^{2} \tan \left (\lambda x \right )^{2 n} \left (-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \right ) \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} a \tan \left (\lambda x \right )^{n} u^{\prime \prime }\left (x \right )-\frac {a \tan \left (\lambda x \right )^{n} n \lambda \left (1+\tan \left (\lambda x \right )^{2}\right ) u^{\prime }\left (x \right )}{\tan \left (\lambda x \right )}+a^{2} \tan \left (\lambda x \right )^{2 n} \left (-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \right ) u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = {\mathrm e}^{-a \left (\int \frac {\left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right ) b -c_{1} b -{\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}\right ) \tan \left (\lambda x \right )^{1+n}}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{1}}d x \right )} c_{2} \] The above shows that \[ u^{\prime }\left (x \right ) = -\frac {a c_{2} \tan \left (\lambda x \right )^{1+n} \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{1} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right ) {\mathrm e}^{-a \left (\int \frac {\tan \left (\lambda x \right )^{1+n} \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{1} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right )}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right )-c_{1}}d x \right )}}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{1}} \] Using the above in (1) gives the solution \[ y = \frac {\tan \left (\lambda x \right )^{1+n} \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{1} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right ) {\mathrm e}^{-a \left (\int \frac {\tan \left (\lambda x \right )^{1+n} \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{1} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right )}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right )-c_{1}}d x \right )} \tan \left (\lambda x \right )^{-n} {\mathrm e}^{\int \frac {\left (-\left (\int {\mathrm e}^{\int \cot \left (\lambda x \right ) \left (2 \tan \left (\lambda x \right )^{n +2} a b -\tan \left (\lambda x \right )^{2} \lambda -\lambda \right )d x} \tan \left (\lambda x \right )^{1+n} a b d x \right )+{\mathrm e}^{\int \cot \left (\lambda x \right ) \left (2 \tan \left (\lambda x \right )^{n +2} a b -\tan \left (\lambda x \right )^{2} \lambda -\lambda \right )d x}+c_{1} b \right ) \tan \left (\lambda x \right )^{1+n} a}{-\left (\int {\mathrm e}^{\int \cot \left (\lambda x \right ) \left (2 \tan \left (\lambda x \right )^{n +2} a b -\tan \left (\lambda x \right )^{2} \lambda -\lambda \right )d x} \tan \left (\lambda x \right )^{1+n} a d x \right )+c_{1}}d x}}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{1}} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = \frac {\tan \left (\lambda x \right ) \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{3} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right )}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{3}} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {\tan \left (\lambda x \right ) \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{3} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right )}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{3}} \\ \end{align*}

Verification of solutions

\[ y = \frac {\tan \left (\lambda x \right ) \left (a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}d x \right ) b -c_{3} b -{\mathrm e}^{-\left (\int \left (-2 a b \tan \left (\lambda x \right )^{1+n}+\sec \left (\lambda x \right ) \csc \left (\lambda x \right ) \lambda \right )d x \right )}\right )}{a \left (\int \tan \left (\lambda x \right )^{1+n} {\mathrm e}^{-\left (\int \left (-2 \cot \left (\lambda x \right ) \tan \left (\lambda x \right )^{n +2} a b +\cot \left (\lambda x \right ) \lambda \left (1+\tan \left (\lambda x \right )^{2}\right )\right )d x \right )}d x \right )-c_{3}} \] Verified OK.

11.8.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-a \tan \left (\lambda x \right )^{n} y^{2}=-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+b \lambda \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = n*lambda*(1+tan(lambda*x)^2)*(diff(y(x), x))/tan(lambda*x)-a*tan(lambd 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Trying a solution in terms of special functions: 
            -> Bessel 
            -> elliptic 
            -> Legendre 
            -> Whittaker 
               -> hyper3: Equivalence to 1F1 under a power @ Moebius 
            -> hypergeometric 
               -> heuristic approach 
               -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
            -> Mathieu 
               -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Trying an equivalence, under non-integer power transformations, 
            to LODEs admitting Liouvillian solutions. 
         -> Trying a solution in terms of special functions: 
            -> Bessel 
            -> elliptic 
            -> Legendre 
            -> Whittaker 
               -> hyper3: Equivalence to 1F1 under a power @ Moebius 
            -> hypergeometric 
               -> heuristic approach 
               -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
            -> Mathieu 
               -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            trying 2nd order exact linear 
            trying symmetries linear in x and y(x) 
            trying to convert to a linear ODE with constant coefficients 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            checking if the LODE is missing y 
            -> Trying a solution in terms of special functions: 
               -> Bessel 
               -> elliptic 
               -> Legendre 
               -> Whittaker 
                  -> hyper3: Equivalence to 1F1 under a power @ Moebius 
               -> hypergeometric 
                  -> heuristic approach 
                  -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
               -> Mathieu 
                  -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
               trying a symmetry of the form [xi=0, eta=F(x)] 
               trying 2nd order exact linear 
               trying symmetries linear in x and y(x) 
               trying to convert to a linear ODE with constant coefficients 
            trying a symmetry of the form [xi=0, eta=F(x)] 
            checking if the LODE is missing y 
            -> Trying an equivalence, under non-integer power transformations, 
               to LODEs admitting Liouvillian solutions. 
            -> Trying a solution in terms of special functions: 
               -> Bessel 
               -> elliptic 
               -> Legendre 
               -> Whittaker 
                  -> hyper3: Equivalence to 1F1 under a power @ Moebius 
               -> hypergeometric 
                  -> heuristic approach 
                  -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
               -> Mathieu 
                  -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
            -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
               trying a symmetry of the form [xi=0, eta=F(x)] 
               trying 2nd order exact linear 
               trying symmetries linear in x and y(x) 
               trying to convert to a linear ODE with constant coefficients 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
         -> trying with_periodic_functions in the coefficients 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(a*tan(lambda*x)^n*y(x)^2+y(x)+x^2*(-a*b^2*tan(lambda*x)^(n+2)+b*lambda*tan(lambd 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6`
 

Solution by Maple

dsolve(diff(y(x),x)=a*tan(lambda*x)^n*y(x)^2-a*b^2*tan(lambda*x)^(n+2)+b*lambda*tan(lambda*x)^2+b*lambda,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==a*Tan[\[Lambda]*x]^n*y[x]^2-a*b^2*Tan[\[Lambda]*x]^(n+2)+b*\[Lambda]*Tan[\[Lambda]*x]^2+b*\[Lambda],y[x],x,IncludeSingularSolutions -> True]
 

Not solved