19.22 problem 22

19.22.1 Solving as riccati ode
19.22.2 Maple step by step solution

Internal problem ID [10614]
Internal file name [OUTPUT/9562_Monday_June_06_2022_03_09_10_PM_16193780/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number: 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

Unable to solve or complete the solution.

\[ \boxed {y^{\prime }-f \left (x \right ) y^{2}=-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda } \]

19.22.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= -f \left (x \right ) \tanh \left (\lambda x \right )^{2} a^{2}-\tanh \left (\lambda x \right )^{2} a \lambda +f \left (x \right ) y^{2}+a \lambda \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = -f \left (x \right ) \tanh \left (\lambda x \right )^{2} a^{2}-\tanh \left (\lambda x \right )^{2} a \lambda +f \left (x \right ) y^{2}+a \lambda \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=-f \left (x \right ) \tanh \left (\lambda x \right )^{2} a^{2}-\tanh \left (\lambda x \right )^{2} a \lambda +a \lambda \), \(f_1(x)=0\) and \(f_2(x)=f \left (x \right )\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{f \left (x \right ) u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=f^{\prime }\left (x \right )\\ f_1 f_2 &=0\\ f_2^2 f_0 &=f \left (x \right )^{2} \left (-f \left (x \right ) \tanh \left (\lambda x \right )^{2} a^{2}-\tanh \left (\lambda x \right )^{2} a \lambda +a \lambda \right ) \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} f \left (x \right ) u^{\prime \prime }\left (x \right )-f^{\prime }\left (x \right ) u^{\prime }\left (x \right )+f \left (x \right )^{2} \left (-f \left (x \right ) \tanh \left (\lambda x \right )^{2} a^{2}-\tanh \left (\lambda x \right )^{2} a \lambda +a \lambda \right ) u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives Unable to solve. Terminating.

19.22.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-f \left (x \right ) y^{2}=-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=f \left (x \right ) y^{2}-a \tanh \left (\lambda x \right )^{2} \left (a f \left (x \right )+\lambda \right )+a \lambda \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)*tanh(lambda*x)*(-2*f(x)*tanh(lambda*x)^2*a*lambda-2*lambda^2*tanh(lambda*x)^ 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve(diff(y(x),x)=f(x)*y(x)^2-a*tanh(lambda*x)^2*(a*f(x)+lambda)+a*lambda,y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==f[x]*y[x]^2-a*Tanh[\[Lambda]*x]^2*(a*f[x]+\[Lambda])+a*\[Lambda],y[x],x,IncludeSingularSolutions -> True]
 

Not solved