21.2 problem 2

21.2.1 Solving as riccati ode
21.2.2 Maple step by step solution

Internal problem ID [10636]
Internal file name [OUTPUT/9584_Monday_June_06_2022_03_10_58_PM_85596946/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-y^{2}=\frac {f \left (\frac {1}{x}\right )}{x^{4}}} \]

21.2.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= \frac {y^{2} x^{4}+f \left (\frac {1}{x}\right )}{x^{4}} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = y^{2}+\frac {f \left (\frac {1}{x}\right )}{x^{4}} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=\frac {f \left (\frac {1}{x}\right )}{x^{4}}\), \(f_1(x)=0\) and \(f_2(x)=1\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=\frac {f \left (\frac {1}{x}\right )}{x^{4}} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} u^{\prime \prime }\left (x \right )+\frac {f \left (\frac {1}{x}\right ) u \left (x \right )}{x^{4}} &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \operatorname {DESol}\left (\left \{\frac {f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {d}{d x}\operatorname {DESol}\left (\left \{\frac {f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] Using the above in (1) gives the solution \[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{\frac {f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\frac {f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}+\textit {\_Y}^{\prime \prime }\left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \\ \end{align*}

Verification of solutions

\[ y = -\frac {\frac {d}{d x}\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\frac {\textit {\_Y}^{\prime \prime }\left (x \right ) x^{4}+f \left (\frac {1}{x}\right ) \textit {\_Y} \left (x \right )}{x^{4}}\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Verified OK.

21.2.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{2} x^{4}-y^{\prime } x^{4}+f \left (\frac {1}{x}\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {y^{2} x^{4}+f \left (\frac {1}{x}\right )}{x^{4}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve(diff(y(x),x)=y(x)^2+1/x^4*f(1/x),y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==y[x]^2+1/x^4*f[1/x],y[x],x,IncludeSingularSolutions -> True]
 

Not solved