21.14 problem 14

21.14.1 Solving as riccati ode
21.14.2 Maple step by step solution

Internal problem ID [10648]
Internal file name [OUTPUT/9596_Monday_June_06_2022_03_11_50_PM_77761706/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number: 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-y^{2}=\lambda ^{2}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}}} \]

21.14.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= \frac {\lambda ^{2} \sin \left (\lambda x +b \right )^{4}+y^{2} \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = \frac {\lambda ^{2} \sin \left (\lambda x \right )^{4} \cos \left (b \right )^{4}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {4 \lambda ^{2} \sin \left (\lambda x \right )^{3} \cos \left (b \right )^{3} \cos \left (\lambda x \right ) \sin \left (b \right )}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {6 \lambda ^{2} \sin \left (\lambda x \right )^{2} \cos \left (b \right )^{2} \cos \left (\lambda x \right )^{2} \sin \left (b \right )^{2}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {4 \lambda ^{2} \sin \left (\lambda x \right ) \cos \left (b \right ) \cos \left (\lambda x \right )^{3} \sin \left (b \right )^{3}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {\lambda ^{2} \cos \left (\lambda x \right )^{4} \sin \left (b \right )^{4}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {y^{2} \sin \left (\lambda x \right )^{4} \cos \left (b \right )^{4}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {4 y^{2} \sin \left (\lambda x \right )^{3} \cos \left (b \right )^{3} \cos \left (\lambda x \right ) \sin \left (b \right )}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {6 y^{2} \sin \left (\lambda x \right )^{2} \cos \left (b \right )^{2} \cos \left (\lambda x \right )^{2} \sin \left (b \right )^{2}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {4 y^{2} \sin \left (\lambda x \right ) \cos \left (b \right ) \cos \left (\lambda x \right )^{3} \sin \left (b \right )^{3}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {y^{2} \cos \left (\lambda x \right )^{4} \sin \left (b \right )^{4}}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}}+\frac {f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\left (\sin \left (\lambda x \right ) \cos \left (b \right )+\cos \left (\lambda x \right ) \sin \left (b \right )\right )^{4}} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=\frac {\lambda ^{2} \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}}\), \(f_1(x)=0\) and \(f_2(x)=1\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=0\\ f_1 f_2 &=0\\ f_2^2 f_0 &=\frac {\lambda ^{2} \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} u^{\prime \prime }\left (x \right )+\frac {\left (\lambda ^{2} \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )\right ) u \left (x \right )}{\sin \left (\lambda x +b \right )^{4}} &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = \operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] The above shows that \[ u^{\prime }\left (x \right ) = \frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right ) \] Using the above in (1) gives the solution \[ y = -\frac {\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = -\frac {\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -\frac {\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \\ \end{align*}

Verification of solutions

\[ y = -\frac {\frac {\partial }{\partial x}\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )}{\operatorname {DESol}\left (\left \{\textit {\_Y} \left (x \right ) \lambda ^{2}+\textit {\_Y}^{\prime \prime }\left (x \right )+\csc \left (\lambda x +b \right )^{4} f \left (\csc \left (\lambda x +b \right ) \sin \left (\lambda x +a \right )\right ) \textit {\_Y} \left (x \right )\right \}, \left \{\textit {\_Y} \left (x \right )\right \}\right )} \] Verified OK.

21.14.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{2} \sin \left (\lambda x +b \right )^{4}+\lambda ^{2} \sin \left (\lambda x +b \right )^{4}-y^{\prime } \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\lambda ^{2} \sin \left (\lambda x +b \right )^{4}+y^{2} \sin \left (\lambda x +b \right )^{4}+f \left (\frac {\sin \left (\lambda x +a \right )}{\sin \left (\lambda x +b \right )}\right )}{\sin \left (\lambda x +b \right )^{4}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying inverse_Riccati 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
`, `-> Computing symmetries using: way = 6 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*lambda*(sin(lambda*x+a)*cos(lambda*x+b)*(D(f))(sin(lambda*x+a)/sin(lambda*x+ 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
`, `-> Computing symmetries using: way = HINT 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve(diff(y(x),x)=y(x)^2+lambda^2+sin(lambda*x+b)^(-4)*f(sin(lambda*x+a)/sin(lambda*x+b)),y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y'[x]==y[x]^2+\[Lambda]^2+Sin[\[Lambda]*x+b]^(-4)*f[Sin[\[Lambda]*x+a]/Sin[\[Lambda]*x+b]],y[x],x,IncludeSingularSolutions -> True]
 

Not solved