22.1 problem 1

22.1.1 Solving as quadrature ode
22.1.2 Maple step by step solution

Internal problem ID [10649]
Internal file name [OUTPUT/9597_Monday_June_06_2022_03_13_08_PM_16682338/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y'-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {y y^{\prime }-y=A} \]

22.1.1 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int \frac {y}{y +A}d y &= x +c_{1}\\ y -A \ln \left (y +A \right )&=x +c_{1} \end {align*}

Solving for \(y\) gives these solutions \begin {align*} y_1&=-A \left (\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-\frac {A +c_{1} +x}{A}}}{A}\right )+1\right )\\ &=-A \left (\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1} {\mathrm e}^{-\frac {x}{A}}}{A c_{1}}\right )+1\right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= -A \left (\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1} {\mathrm e}^{-\frac {x}{A}}}{A c_{1}}\right )+1\right ) \\ \end{align*}

Verification of solutions

\[ y = -A \left (\operatorname {LambertW}\left (-\frac {{\mathrm e}^{-1} {\mathrm e}^{-\frac {x}{A}}}{A c_{1}}\right )+1\right ) \] Verified OK.

22.1.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y y^{\prime }-y=A \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {y+A}{y} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } y}{y+A}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } y}{y+A}d x =\int 1d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & y-A \ln \left (y+A \right )=x +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & y=-A \left (\mathit {LambertW}\left (-\frac {{\mathrm e}^{-\frac {A +c_{1} +x}{A}}}{A}\right )+1\right ) \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
<- separable successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 30

dsolve(y(x)*diff(y(x),x)-y(x)=A,y(x), singsol=all)
 

\[ y \left (x \right ) = -A \left (\operatorname {LambertW}\left (-\frac {{\mathrm e}^{\frac {-A -c_{1} -x}{A}}}{A}\right )+1\right ) \]

Solution by Mathematica

Time used: 60.032 (sec). Leaf size: 28

DSolve[y[x]*y'[x]-y[x]==A,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to -A \left (1+W\left (-\frac {e^{-\frac {A+x+c_1}{A}}}{A}\right )\right ) \]