2.28 problem 28

2.28.1 Solving as riccati ode
2.28.2 Maple step by step solution

Internal problem ID [10357]
Internal file name [OUTPUT/9305_Monday_June_06_2022_01_50_51_PM_42556060/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number: 28.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"

Maple gives the following as the ode type

[_Riccati]

\[ \boxed {y^{\prime }-y^{2}-a \,x^{n} y=-b a \,x^{n}-b^{2}} \]

2.28.1 Solving as riccati ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= y^{2}+x^{n} a y -b a \,x^{n}-b^{2} \end {align*}

This is a Riccati ODE. Comparing the ODE to solve \[ y' = y^{2}+x^{n} a y -b a \,x^{n}-b^{2} \] With Riccati ODE standard form \[ y' = f_0(x)+ f_1(x)y+f_2(x)y^{2} \] Shows that \(f_0(x)=-b a \,x^{n}-b^{2}\), \(f_1(x)=x^{n} a\) and \(f_2(x)=1\). Let \begin {align*} y &= \frac {-u'}{f_2 u} \\ &= \frac {-u'}{u} \tag {1} \end {align*}

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for \(u(x)\) which is \begin {align*} f_2 u''(x) -\left ( f_2' + f_1 f_2 \right ) u'(x) + f_2^2 f_0 u(x) &= 0 \tag {2} \end {align*}

But \begin {align*} f_2' &=0\\ f_1 f_2 &=x^{n} a\\ f_2^2 f_0 &=-b a \,x^{n}-b^{2} \end {align*}

Substituting the above terms back in equation (2) gives \begin {align*} u^{\prime \prime }\left (x \right )-x^{n} a u^{\prime }\left (x \right )+\left (-b a \,x^{n}-b^{2}\right ) u \left (x \right ) &=0 \end {align*}

Solving the above ODE (this ode solved using Maple, not this program), gives

\[ u \left (x \right ) = {\mathrm e}^{\int \frac {-\left (\int {\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}d x \right ) b +c_{1} b +{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{1}}d x} c_{2} \] The above shows that \[ u^{\prime }\left (x \right ) = -\frac {c_{2} \left (-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right ) b +c_{1} b +{\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}\right ) {\mathrm e}^{\int \frac {-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right ) b +c_{1} b +{\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{1}}d x}}{-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right )+c_{1}} \] Using the above in (1) gives the solution \[ y = \frac {\left (-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right ) b +c_{1} b +{\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}\right ) {\mathrm e}^{\int \frac {-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right ) b +c_{1} b +{\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{1}}d x} {\mathrm e}^{\int -\frac {\int -b \,{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}d x +{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}+c_{1} b}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{1}}d x}}{-\left (\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x \right )+c_{1}} \] Dividing both numerator and denominator by \(c_{1}\) gives, after renaming the constant \(\frac {c_{2}}{c_{1}}=c_{3}\) the following solution

\[ y = \frac {\left (\int {\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}d x -c_{3} \right ) b -{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{3}} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {\left (\int {\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}d x -c_{3} \right ) b -{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{3}} \\ \end{align*}

Verification of solutions

\[ y = \frac {\left (\int {\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}d x -c_{3} \right ) b -{\mathrm e}^{\frac {a \,x^{1+n}+2 b x \left (1+n \right )}{1+n}}}{\int {\mathrm e}^{\frac {\left (x^{n} a +2 b \left (1+n \right )\right ) x}{1+n}}d x -c_{3}} \] Verified OK.

2.28.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime }-y^{2}-a \,x^{n} y=-b a \,x^{n}-b^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=y^{2}+a \,x^{n} y-b a \,x^{n}-b^{2} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
Looking for potential symmetries 
trying Riccati 
trying Riccati sub-methods: 
   trying Riccati_symmetries 
   trying Riccati to 2nd Order 
   -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (diff(y(x), x))*x^n*a+(b*x^n*a+b^2)*y(x), y(x)`      *** Sublevel 2 ** 
      Methods for second order ODEs: 
      --- Trying classification methods --- 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Trying an equivalence, under non-integer power transformations, 
         to LODEs admitting Liouvillian solutions. 
      -> Trying a solution in terms of special functions: 
         -> Bessel 
         -> elliptic 
         -> Legendre 
         -> Kummer 
            -> hyper3: Equivalence to 1F1 under a power @ Moebius 
         -> hypergeometric 
            -> heuristic approach 
            -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
         -> Mathieu 
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      -> Trying changes of variables to rationalize or make the ODE simpler 
      <- unable to find a useful change of variables 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
         trying 2nd order, integrating factor of the form mu(x,y) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         checking if the LODE is missing y 
         -> Trying an equivalence, under non-integer power transformations, 
            to LODEs admitting Liouvillian solutions. 
         -> Trying a solution in terms of special functions: 
            -> Bessel 
            -> elliptic 
            -> Legendre 
            -> Kummer 
               -> hyper3: Equivalence to 1F1 under a power @ Moebius 
            -> hypergeometric 
               -> heuristic approach 
               -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius 
            -> Mathieu 
               -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
         -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         -> Trying changes of variables to rationalize or make the ODE simpler 
         <- unable to find a useful change of variables 
            trying a symmetry of the form [xi=0, eta=F(x)] 
         trying to convert to an ODE of Bessel type 
   -> Trying a change of variables to reduce to Bernoulli 
   -> Calling odsolve with the ODE`, diff(y(x), x)-(y(x)^2+y(x)+a*x^n*y(x)*x+x^2*(-b*x^n*a-b^2))/x, y(x), explicit`      *** Subleve 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      trying Bernoulli 
      trying separable 
      trying inverse linear 
      trying homogeneous types: 
      trying Chini 
      differential order: 1; looking for linear symmetries 
      trying exact 
      Looking for potential symmetries 
      trying Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
      trying inverse_Riccati 
      trying 1st order ODE linearizable_by_differentiation 
   -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
   -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
   <- symmetry pattern of the form [0, F(x)*G(y)] successful 
   <- Riccati with symmetry pattern of the form [0,F(x)*G(y)] successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 74

dsolve(diff(y(x),x)=y(x)^2+a*x^n*y(x)-a*b*x^n-b^2,y(x), singsol=all)
 

\[ \frac {\left (b -y \left (x \right )\right ) \left (\int _{}^{x}{\mathrm e}^{\frac {\left (\textit {\_a}^{n} a +2 b \left (n +1\right )\right ) \textit {\_a}}{n +1}}d \textit {\_a} \right )+c_{1} b -c_{1} y \left (x \right )-{\mathrm e}^{\frac {\left (a \,x^{n}+2 b \left (n +1\right )\right ) x}{n +1}}}{b -y \left (x \right )} = 0 \]

Solution by Mathematica

Time used: 1.948 (sec). Leaf size: 195

DSolve[y'[x]==y[x]^2+a*x^n*y[x]-a*b*x^n-b^2,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {e^{\frac {a x^{n+1}}{n+1}+2 b x}}{a n (K[2]-b)^2}-\int _1^x\left (\frac {e^{\frac {a K[1]^{n+1}}{n+1}+2 b K[1]} \left (a K[1]^n+b+K[2]\right )}{a n (b-K[2])^2}+\frac {e^{\frac {a K[1]^{n+1}}{n+1}+2 b K[1]}}{a n (b-K[2])}\right )dK[1]\right )dK[2]+\int _1^x\frac {e^{\frac {a K[1]^{n+1}}{n+1}+2 b K[1]} \left (a K[1]^n+b+y(x)\right )}{a n (b-y(x))}dK[1]=c_1,y(x)\right ] \]