22.31 problem 31

22.31.1 Maple step by step solution

Internal problem ID [10679]
Internal file name [OUTPUT/9627_Monday_June_06_2022_03_16_41_PM_51445858/index.tex]

Book: Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section: Chapter 1, section 1.3. Abel Equations of the Second Kind. Form \(y y'-y=f(x)\). subsection 1.3.1-2. Solvable equations and their solutions
Problem number: 31.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type

[_rational, [_Abel, `2nd type`, `class B`]]

Unable to solve or complete the solution.

\[ \boxed {y y^{\prime }-y=-\frac {12 x}{49}+\frac {4 A \left (-10 \sqrt {x}+27 A +\frac {10 A^{2}}{\sqrt {x}}\right )}{49}} \] Unable to determine ODE type.

22.31.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 40 A^{3}+108 A^{2} \sqrt {x}-40 A x -49 y y^{\prime } \sqrt {x}+49 y \sqrt {x}-12 x^{\frac {3}{2}}=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=-\frac {-40 A^{3}-108 A^{2} \sqrt {x}+40 A x -49 y \sqrt {x}+12 x^{\frac {3}{2}}}{49 y \sqrt {x}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
trying separable 
trying inverse linear 
trying homogeneous types: 
trying Chini 
differential order: 1; looking for linear symmetries 
trying exact 
trying Abel 
   Looking for potential symmetries 
   Looking for potential symmetries 
Looking for potential symmetries 
trying inverse_Riccati 
trying an equivalence to an Abel ODE 
differential order: 1; trying a linearization to 2nd order 
--- trying a change of variables {x -> y(x), y(x) -> x} 
differential order: 1; trying a linearization to 2nd order 
trying 1st order ODE linearizable_by_differentiation 
--- Trying Lie symmetry methods, 1st order --- 
`, `-> Computing symmetries using: way = 3 
`, `-> Computing symmetries using: way = 4 
`, `-> Computing symmetries using: way = 2 
trying symmetry patterns for 1st order ODEs 
-> trying a symmetry pattern of the form [F(x)*G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)*G(y)] 
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)] 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(5*A^3+5*A*x+3*x^(3/2))/(10*A^3*x+27*A^2*x^(3/2)-3*x^(5/2)-10*x^2*A), y(x)` 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
`, `-> Computing symmetries using: way = HINT 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(1/20)*(20*A*y(x)-9*x)/(A*x), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)+(1/80)*(80*A^3*y(x)-108*A^2*x-49*x^2)/(A^3*x), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
   -> Calling odsolve with the ODE`, diff(y(x), x)+4*A*(27*A*y(x)+10*x)/(x*(108*A^2+49*x)), y(x)`      *** Sublevel 2 *** 
      Methods for first order ODEs: 
      --- Trying classification methods --- 
      trying a quadrature 
      trying 1st order linear 
      <- 1st order linear successful 
-> trying a symmetry pattern of the form [F(x),G(x)] 
-> trying a symmetry pattern of the form [F(y),G(y)] 
-> trying a symmetry pattern of the form [F(x)+G(y), 0] 
-> trying a symmetry pattern of the form [0, F(x)+G(y)] 
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
-> trying a symmetry pattern of conformal type`
 

Solution by Maple

dsolve(y(x)*diff(y(x),x)-y(x)=-12/49*x+4/49*A*(-10*x^(1/2)+27*A+10*A^2*x^(-1/2)),y(x), singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[y[x]*y'[x]-y[x]==-12/49*x+4/49*A*(-10*x^(1/2)+27*A+10*A^2*x^(-1/2)),y[x],x,IncludeSingularSolutions -> True]
 

Not solved